SOFTWARE ENGINEERING LABORATORY SEL-85-006 SEL-85-006

PROCEEDINGS OF THE
TENTH ANNUAL SOFTWARE
ENGINEERING WORKSHOP

?§EASQ~Tﬁ-88786) FROCEEDINGS OF 1ENTH ANNUAL N86-30357
SOFTWARE ENGINEERING WCRKSHOE: (N2SA) 366 p THRU
CSCL 098 N86~303569
OUnclas

G3/61 %2950 -

DECEMBER 1985

NNS

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

PROCEEDINGS
OF

TENTH ANNUAL SOFTWARE ENGINEERING WORKSHOP

Organized by:

Software Engineering Laboratory
GSFC

December 4, 1985

GODDARD SPACE FLIGHT CENTER
Greenbelt, Maryland

i

FOREWARD

The Software Engineering Laboratory (SEL) is an organization sponsored by the National Aeronautics
and Space Administration Goddard Space Flight Center (NASA/GSFC) and created for the purpose of
investigating the effectiveness of software engineering technologies when applied to the development of
applications software. The SEL was created in 1977 and has three primary organizational members:

NASA/GSFC (Systems Development and Analysis Branch)
The University of Maryland (Computer Sciences Department)
Computer Sciences Corporation (Flight Systems Operation)

The goals of the SEL are (1) to understand the software development process in the GSFC environ-
ment; (2) to measure the effect of various methodologies, tools, and models on this process; and (3) to
identify and then to apply successful development practices. The activities, findings, and recommenda-
tions of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of
reports that includes this document.

Single copies of this document can be obtained from

Ms. Tillery

NASA Scientific And Technical Installation Facility
P.O. Box 8757

B.W.I. Airport, Md 21240

ii

8:00 a.m.

8:45 a.m.

9:00 a.m.

10:00 a.m.

10:30 a.m.

12:30 p.m.

AGENDA

TENTH ANNUAL SOFTWARE ENGINEERING WORKSHOP
NASA/GODDARD SPACE FLIGHT CENTER

BUILDING 8 AUDITORIUM
DECEMBER 4, 1985

Registration - ‘Sign-In’
Coftee, Donuts

INTRODUCTORY REMARKS

Session No. 1

““Can We Measure Software Technology; Lessons
from 8 Years of Trying’’

““Recent SEL Studies’’

BREAK

Session No. 2

““Software Management Tools: Lessons Learned From
Use™’

“DEASEL: An Expert System for
Software Engineering’’

‘“‘An Experimental Evaluation of Error Seeding as a
Program Validation Technique’’

““Quality Assurance Software Inspections at NASA
Ames”’

LUNCH

iii

J. J. Quann, Deputy Director
(NASA/GSFC)

Topic: Research in the Software
Engineering Laboratory (SEL)

Discussant: J. Page (CSC)

V. Basili (Univ. of Maryland)

F. E. McGarry (NASA/GSFC)

Topic: Tools for Software
Management

Discussant: D. Card (CSC)

D. Reifer (RCI)

J. Valett (NASA/GSFC)
A. Raskin (Yale)

J. Knight (Univ. of Virginia)
P. Ammann

G. Wenneson (Informatics)

1:30 p.m.

3:00 p.m.

3:30 p.m.

5:00 p.m.

Session No. 3

““‘A Knowledge Based Software Engineering Environ-
ment Testbed”’

““Experience with a Software Engineering Environment
Framework’’

““One Approach for Evaluating the Distributed Com-
puting Design System (DCDS)”’

BREAK

Session No. 4

‘“‘An Ada Experiment with MSOCC Software™’

‘“‘Observations From a Prototype Implementation of the
Common APSE Interface Set (CAIS)”’

‘“Measuring Ada as a Software Development
Technology in the SEL”’

ADJOURN

Results of the SEL Workshop Questionnaire will be
Found at the End of the Proceedings

iv

Topic: Software Environments
Discussant: E. Katz

(Univ. of Maryland)
C. Gill (BCS)
R. Blumberg (PRC)

A. Reedy
E. Yodis

L. Baker (TRW)

Topic: Experiments_with Ada
Discussant: E. Seidewitz
(NASA/GSFC)

D. Roy (Century Computing)

M. McClimens (Mitre)

B. Agresti (CSC)

SUMMARY OF THE TENTH ANNUAL

SOFTWARE ENGINEERING WORKSHOP

Prepared for

GODDARD SPACE FLIGHT CENTER

by
L. Jordan

COMPUTER SCIENCES CORPORATION

The Tenth Annual Software Engineering Workshop was held on
December 4, 1985, at the National Aeronautics and Space
Administration (NASA)/Goddard Space Flight Center (GSFC) in
Greenbelt, Maryland. This annual meeting is held to report
and discuss experiences in the measurement, utilization, and
evaluation of software methods, models, and tools. The
workshop was organized by the Software Engineering Labora-
tory (SEL), whose members represent NASA/GSFC, the University
of Maryland, and Computer Sciences Corporation (CSC). The
workshop was conducted in four sessions:

Research in the SEL
Tools for Software Management
Software Environments

o & & 9

Experiments with Ada

Twelve papers were presented, and the audience actively par-
ticipated in all discussions through general commentary,
questions, and interaction with the speakers. Over 400 per-
sons representing 55 private corporations, 6 universities,
and 27 agencies of the Federal Government attended the work-
shop.

John J. Quann, Deputy Director of NASA/GSFC, noted in his
opening remarks that programs such as this workshop are very
important for the exchange of ideas to improve software
development and products. This is especially due to the
increasing interest in software engineering (e.g., the pro-
curement of a Space Station software support environment
(SSE) by Johnson Space Center), the growth of the Space Sta-
tion Program, and the increasing use of Ada. Mr. Quann also
noted that in the future, the workshop may need to be ex-
panded to 1-1/2 to 2 days and include representatives of the
international community.

Because this workshop represented the tenth anniversary of
the SEL, the major theme of the first session, Research in

L. Jordan
1 of 20

the SEL, consisted of an overview of the SEL experimentation
process and a summary of recent studies completed. 1In his
introduction to the session, Dr. Gerald Page of CSC dis-
cussed the background of the SEL, its structure, the devel-
opment characteristics of SEL software, and the scope of SEL
activities. The SEL was formally established in 1976 by
NASA/GSFC to improve its software development process and
products by measuring the software development process,
evaluating existing technologies, and transferring success-
ful technologies into the development environment at NASA/
GSFC. The software studied within the SEL environment is
primarily scientific, ground-based, interactive, near-real-
time software written primarily in FORTRAN (85 percent) on
IBM mainframes. The typical project is 65 K source lines of
code (SLOC) (2 to 160 KSLOC) in size and takes 16 to

25 months (from start of design to start of operations) with
6 to 18 people to complete. Data have been collected by the
SEL for more that 50 projects that represent over 2 mil-
lion LOC produced by over 200 developers and reported by
over 30,000 forms submitted. About 50 state-of-the-art
technologies have been studied and many tools, standards,
and models for use by developers have been produced.

Dr. William Agresti of CSC presented the results of a ques-
tionnaire that was circulated to the meeting attendees. The
questionnaire was intended to help mark the tenth anniversary
of the workshop and requested information from the respond-
ents concerning their

) Role in software development
® Data collection activity
e Perception of changes in software quality

L. Jordan
CSC
2 of 20

® Opinions regarding progress (or lack of it) in var-
ious areas of software engineering

The results are presented elsewhere in these proceedings.

Dr. Victor Basili of the University of Maryland drew on the
l0-year history of the SEL to present SEL experience in the
area of measurement (Measuring the Software Process and
Product: Lessons Learned by the SEL). He noted that there
are many reasons for collecting data that measure the soft-
ware development process and products. These reasons in-
clude the establishment of a corporate memory (e.g., for
planning), the determination of strengths and weaknesses of
current methodologies and technologies, and the determina-
tion of a rationale for adopting new technologies. There
are also different aspects to measurement, including soft-
ware characteristics, development resources, and errors.
These aspects thus represent many classes of project data.
The most important lessons learned by the SEL in this area
revolve around the development of a goal-driven paradigm for
data collection. The reasons for collecting data must be
clearly defined at the detailed level to avoid collection of
too much or inappropriate data. This requires a clear char-
acterization of data in terms of explicit goals (e.g., what
phase was the greatest source of error) and metrics (e.g.,
error distribution by phase). Dr. Basili defined six steps
for the data collection process:

e Generate a set of goals

@ Derive a set of questions or hypotheses to quantify
the goals

® Develop a set of metrics to answer the questions

® Define a mechanism to collect the data as accurately

as possible

L. Jordan
3 of 20

® Validate the data
® Analyze the data to answer the guestions

He then discussed a goal-setting template in terms of pur-
pose (to characterize, evaluate, etc.), perspective, envi-
ronment, and hierarchy of perspective. A subtemplate
included the definition of the process (i.e., quality of

use, domain of use, cost, effectiveness), feedback (lessons
learned, model validation), the product, and the perspective.

Regarding the successes and failures for the SEL, Dr. Basili
noted that the effort data have been good (but can be im-
proved) and have led to the development of good cost models.
Error data have been good on occurrence (history of errors
and changes can be tracked) but have been poor for specifics
(detailed technique information for error detection is not
easily available). Project characteristics are accurately
recorded, but recording problem characteristics is diffi-
cult. Technology data are good for level of use for the
overall methodology, but it is difficult to isolate the in-
dividual impact. In terms of the cost of data collection
for the SEL,

® Direct cost can be less that 3 percent
® Processing cost is 5 percent or greater
° Analysis cost is 15 to 20 percent (includes inter-

pretation, reporting, research support, publication
of papers, and technology transfer)

In response to questions, Dr. Basili indicated that some
measurement could be automated (this may include some as-
pects of software quality--productivity, reliability, and
maintainability--and overall records) and that the cost of
data collection does include corrective action in the areas
of documents, standards, and training. Some discussion of
the Rome Air Development Center work followed the discussion.

L. Jordan
CSC
4 of 20

Mr. Frank E. McGarry of GSFC presented an overview of

10 years of SEL research and a more detailed look at épecific
research projects in the last 2 years (Studies and Experi-
ments in the Software Engineering Laboratory). SEL research
in four areas has recently concentrated on the following:

° Tools and environments--Management tools and pro-
gramming environments

) Development methods--Testing approaches and Ada
studies

) Measures and profiles--Design and specification
measures

) Models-~-Relationship equations

In the measurement of environment (in terms of software
tools, computer support for batch versus interactive proc-
essing, and the number of terminals per programmer),

Mr. McGarry described an experiment using 14 projects that
showed

® Positive correlation for tool support and produc-
tivity, effort to change, and effort to repair; no
correlation with reliability

® No correlation between computer environment and any
of the factors measured

® Negative correlation between terminals per pro-
grammer and productivity and reliability; no cor-
relation with effort to change or effort to repair

He described an experiment to determine the characteristics
of functional testing in an acceptance testing environment
and compare the test profile with operational usage. The
characteristics used were percent of code and modules

L. Jordan
CSC
5 of 20

executed and the profiles of errors found. A single flight
dynamics program with 10 functional test and 60 operational
use cases yielded results showing that functional testing
during acceptance testing is very representative of opera-
tional usage.

Mr. McGarry then described an experiment using 3 FORTRAN
programs seeded with faults that were tested by 32 profes-
sional programmers using 3 verification techniques (code
reading, functional testing, and structural testing). The
results showed code reading to be the best technigue in
terms of faults detected (code reading, 61 percent; func-
tional testing, 51 percent; structural testing, 38 percent)
and number of faults detected per hour of effort (code read-
ing, 3.3; functional testing, 1.8; structural testing, 1.8).
Another analysis of testing techniques versus size showed

that functional testing may be more effective for larger
programs.

In the area of software design measures, Mr. McGarry pre-
sented study results that showed the effects of module
strength (types and numbers of module £functions), size, and
coupling (parameter, mixed, and COMMON) on costs and errors.
Based on 450 FORTRAN modules and about 20 developers, the
fault rate was zero for 50 percent of the high-strength mod-
ules and 18 percent of the low-strength modules. A high
fault rate was found for 20 percent of the high-strength
modules and 44 percent of the low-strength modules. The
analysis for size showed a slightly higher percentage of
fault-prone modules for small modules (36 percent) than for
medium (29 percent) or large modules (27 percent). The
parameter coupling modules had a higher percentage of fault-
prone modules (40 percent) than either the mixed (29 per-
cent) or the COMMON (30 percent) coupling types. Overall,
good programmers tend to write high-strength modules with no
preference for size. High-strength modules have a lower

L. Jordan
6 of 20

fault rate and cost less than low-strength modules, and
large modules cost less (per executable statement) than
small ones. The fault rate does not appear to be directly
related to size.

In the area of computer use and technology over time,

Mr. McGarry defined a technology index and applied it to
projects that started between 1976 and 1982. Computer use
has increased from 130 runs per KLOC to 235 runs per KLOC,
and the technology index has increased from 90 to 140.

There is no significant correlation between computer use and
the technology index. In other specific areas:

) Software reuse is increasing over time and appears
to have significant potential as a technology.

® The total technology index has a favorable effect
on reliability but no obvious correlation with pro-
ductivity (productivity is too sensitive to too
many other factors).

® Individual techniques are difficult to measure.
° Integrated methodologies have a favorable effect on
quality.

Responding to questions, Mr. McGarry clarified several
points about the detailed methods used in the experiment
that compared the 3 software testing techniques, and he em-
phasized that code reading could not be substituted for ac-
ceptance testing. He also indicated that the 32 programmers
participating in the study did not seem to be affected
(Hawthorne effect) by the monitoring of the experiment. He
stated that these results differed with those of Myers be-
cause of a difference in the definition of code reading. On
the issue of terminal use versus productivity, he felt that
more terminals available resulted in more concurrent tasks
so that productivity suffered more when the terminals were

L. Jordan
CSC
7 of 20

down. This effect may also be caused by the lack of a dis-

ciplined approach with respect to terminal use and may be
corrected with time and effort.

The topic of the second session was Tools for Software Man-
agement. Mr. Donald Reifer of Reifer Consultants, Inc.,
discussed experiences in inserting software project planning
tools into more than 100 projects producing mission-critical
software and in using a Project Manager's Workstation (PMW)
and a SoftCost-R cost estimation package (Software Manage-
ment Tools: Lessons Learned From Use). . He defined the man-
agement process as beginning with planning, organizing, and
staffing a team and then in communicating, motivating, in-
tegrating, measuring, controlling, and directing the efforts
of the team through an iterative process. He listed a num-
ber of necessary tools in the contexts of the company's sys-
tem, project management, functional management, and line
management. Over 300 packages exist to support these func-
tions. Managers tend not to use tools because of time pres-
sures (too busy to learn and to use them) and because the
tools do not fit into the existing system. A need to over-
come this problem is recognized by the STARS program in at-
tempting to develop management tools to eliminate paperwork
in such areas as scheduling.

PMW is an experimental system to integrate several tools
into a package to do scheduling, graphing (e.g., PERT), and
reporting in a variety of areas. Mr. Reifer found that the
manager/machine interface must be user-friendly (picture
oriented, function key driven, and menu based) and that the
package must be easy to learn and have built-in safegqguards
and help facilities (managers do not read manuals). The
problem of initial data entry is severe; managers do not
have the time to do it and subordinates do not have the
knowledge. In general, Mr. Reifer noted that vendors do not
implement all the features in their manuals or make it easy

L. Jordan
CSC
8 of 20

to interface their packages with other packages. He found
that the most useful tools are work-planning oriented, the
most used tools are time-management oriented, and the most
wanted tools are what-if oriented.

SoftCost-R is a package that generates schedule and resource
estimates for about 50 tasks making up a project. Based on
about 60 sizing and productivity factors, it computes a con-
fidence factor for delivering on time and within budget,
produces a standard work breakdown structure for software
development tasks, and provides a capability for what-if
analysis and plotting. Mr. Reifer found that organizational
preconditioning is necessary. Data are not generally avail-
able in most companies for using SoftCost-R to develop cali-
brations for the models or to validate them. There is no
existing framework that can supply these tools with the
needed information. Application of cost models has, in some
cases, forced changes in business practice that seemed dis-
ruptive, but were really not. Calibrating the models to the
organization is difficult. Model architectures must expose
calibration points and sensitivities, and these must be eas-
ily altered, since organizations are dynamic. Users often
rely too much on modéls without understanding their scope or
limitations. Also, users often do not believe model results
(find it difficult to face or believe unpleasant truths).

In response to a guestion, Mr. Reifer noted that vendors
should add a user-friendly demonstration that shows a man-
ager how to get what he wants. He said that, in some cases,
these demonstrations can be obtained by writing and that the
cost of the demonstration is subsequently subtracted from
the cost of the package. In summary, he noted that vendors
should pay as much attention to packaging as to functions
and features, should make systems manager-friendly and not
programmer-friendly, and should provide what-if capability

L. Jordan
9 of 20

and a lot of small useful tools. Users should not assume
vendors deliver what is advertised, should worry about
bridging between packages and not assume it is easily done,
and should realize that tools may act as a catalyst for or-
ganizational change.

In response to questions regarding bridging applications,

Mr. Reifer suggested two strategies: (1) build a data re-
pository that is usable by different tools and (2) get tools
that adhere to standard formats. He also noted some possible
advantages of SoftCost-R over the widely used COCOMO:
SoftCost-R is suited for mission-critical software, covers
reused code, provides cradle-to-the-grave project coverage,
provides adequate support for parametric and statistical
studies. COCOMO does not.

Mr. Jon Valett of GSFC described a tool that combines the
SEL data base and a manager's experience to support project
estimation and development progress assessment in the flight
dynamics environment (DEASEL: An Expert System for Software
Engineering). Managers were interviewed in an effort to
capture their experience and combine it with specific SEL
data to form the knowledge base. The system is defined in
terms of rules (factors and weights) and assertions to as-
sess projects. The rules define relationships and weights
between specific parameters and system goals (e.g., change
rate and design stability). Assertions provide actual values
of parameters for a specific project that are then used to
compute an assessment of the project compared to system
goals in terms of a rating (good to bad) and a confidence
factor. The current system is applicable to the design
phase and uses 25 rules. It can provide project assess-
ments, explain the assessment, and provide what-if analysis.
Current plans are to add rules for other development phases,
to validate the existing rules and the current assessment

L. Jordan
CSC
10 of 20

process, and to catenate the generation of assertions. 1In
response to questions, he indicated that the development
environment was VAX and LISP.

Dr. John C. Knight of the University of Virginia described
an experiment that seeded errors into 27 functionally iden-
tical programs to assess error seeding as a technique for
validating programs (An Experimental Evaluation of Error
Seeding as a Program Validation Technique). He noted as
background that verification is preferred to testing but
that it is usually not feasible and is subject to error. 1In
answering the question of when testing should stop, he in-
dicated that testing typically stops when the money is gone
or when the project runs out of time.

The classical error seeding approach relies on a relation-
ship between indigenous error and seeded error discovery
"that assumes the following:

® Indigenous errors are hard to find.

° Indigenous and seeded errors are independent.

® Seeded errors are as hard to find as indigenous
errors.

Dr. Knight noted that the last assumption is obviously false
because indigenous errors are subtle, and high-powered arti-
ficial intelligence methods are required to generate equally
subtle errors for seeding.

For this experiment, simple séeding algorithms were applied
to FOR, IF, and Assignment statements. The 27 functionally
identical programs consisted of 327 to 1004 lines of Pascal
code. Seeding algorithms were applied 4 times to each pro-
gram to produce a total of 108 seeded programs. The pro-
grams were subjected to 1 million test cases. Dr. Knight
found that a surprising number of seeded errors were found
only after thousands of tests and that they were actually

L. Jordan
CSC
11 of 20

being successfully executed (in one case, a seeded error
corrected a bug). His evaluation of the three assumptions
was that they were all questionable. He also stated that
the assumption of N-Version Programming, that independently
written programs will fail independently, is false. This
conclusion is based on his finding that many different types
of errors can produce similar patterns of failure.

In response to questions, Dr. Knight noted that the class of
seeded errors was very small compared to the class of indig-
enous errors and that robust testing techniques do not elim-
inate long-mean-time-to-failure errors. Simple errors may
survive 10,000 tests before being located. He said that
random test generation was used for his experiment and that
scientific testing might have done better.

Mr. Greg Wenneson of Informatics General Corporation de-
scribed procedures to control software quality (Software
Inspections at NASA Ames). Productivity gains of 40 percent
have been realized through the use of these inspection pro-
cedures (compared to 23 percent reported bty IBM), based on
one program that was rewritten and that includes major
methodology changes. Inspection tools include standards,
material preparation criteria, error checklists, exit cri-
teria, and written records and statistics. The team members
are the moderator, reader, inspectors, and the author. The
inspection process comprises team selection, overview, prep-
aration, inspections sessions (may be desk inspections),
rework, and followup. Mr. Wenneson also defined problem
recording (module inspection problem report, general prob-
lems report), problem statistics (module problem summary,
module time and disposition report), and inspection statis-
tics (inspector time report, inspection general summary,
outline of rework schedule).

L. Jordan
CSC
12 of 20

For FORTRAN modules, 144 problems were reported per KLOC for
preliminary design, 227 for detailed design, 67 for desk-
inspected code, and 83 for regular inspection. Effort for
this activity was 15 person-weeks per KLOC for preliminary
design, 24 for detailed design, 4 for desk-inspected code,
and 9 for regular inspection. The number of previous in-
spections affect both the error rates and preparation and
meeting time. The major error rate of 30 per KLOC for 1
previous inspection increases to 38 for 3 previous inspec-
tions. Preparation and meeting time increases from

9.2 person-weeks per KLOC for 1 previous inspection to 10
for 3 previous inspections.

In his summary, Mr. Wenneson emphasized that inspections are
not a substitute for thinking; that they must be scheduled
at the beginning of a project (and not just tacked on); and
that participant training and customer and management sup-
port are crucial. Future plans include application to new
languages and design techniques, expansion to new methodolo-
gies and support tools, inclusion of feedback to current
methodologies, and expansion to other application areas.

In the following panel discussion, Mr. Wenneson stated that
the system used for his example consisted of about 5 percent
assembly language modules and that the assembly language
numbers for design in his presentation related to the target
language rather than to the design language. For downstream
savings, he said that, although his statistics stop at the
end of coding, other sources indicate that errors cost less
to repair. Desk inspection found 80 percent of the errors
found by regular inspection but cost 40 percent less. As a
guildeline, he suggested that a project of less than 1000 LOC
should not be split into too many pieces and that 50 to

100 LOC should be represented by 1 line of design.

L. Jordan
CSC
13 of 20

The topic of the third session was Software Environments.
Mr. Chris Gill of Boeing Computer Services described a re-
search project to apply artificial intelligence to software
engineering (A Knowledge-Based Software Engineering Environ-
ment Testbed). The multiyear project has completed its
first year. The objectives are to determine the benefits of
applying artificial intelligence to software engineering,
demonstrate improvements in the software development process
and in software quality, and develop a test bed for experi-
mentation. The system consists of an integrated set of
tools covering the entire life cycle (analysis, design, and
production) and several areas of effort (project management,
software development support, and configuration management).
The knowledge base is derived from procedures and inter-
views. The knowledge representation deals with modeling
software project concepts and links. Inference mechanisms
deal with the ways this knowledge can be used to solve user
Gevelopment problems. The knowledge-based interface deals
with the intelligent display, explanation, and interaction
with the user.

After one year, a model of software development activities
has been created, and the groundwork has been done in the
module representation formalism to specify the behavior and
structure of software objects. The model and formalism have
been integrated to identify shared representation and inher-
itance mechanisms. Object programming has been demonstrated
by writing procedures and applying them to software objects
(e.g., by propagating changes) in a development system.
Data-directed reasoning has been used to infer the probable
cause of bugs by interpreting problem reports. Goal-directed
reasoning has been used to evaluate the appropriateness of a
software configuration. Plans for next year include using
knowledge-based simulations to perform rapid prototyping,
enhancing the user interface, using a "blackboard"

L. Jordan
CSC
14 of 20

architecture to allow experts to confer, and using distrib-
uted systems to permit separate systems to act on goals sent
by other systems.

In his conclusion, Mr. Gill stated that the project showed
promise. It provides leverage of integration, because data
are keyed in only once. There is, however, a need to apply
it to real systems. 1In the following discussion, he indi-
cated that the system contains several hundred rules for
scheduling and task management. The current demonstration
uses the graphics and reasoning (e.g., manager experience
versus complexity) capabilities. Most of the current capa-
bilities relate to specification and design.

During the panel discussion after the session, it was men-
tioned that there are currently seven projects using artifi-
cial intelligence approaches to software environments (five
in Japan, and two in England). The system reported by

Mr. Gill is the first heard of in the United States.

Ms. Ann Reedy of Planning Research Corporation described an
automated product control environment developed to reduce
life-cycle costs and increase automation of the software
development process (Experience With a Software Engineering
Environment Framework). This framework is not composed of
tools, but provides for overall control, coordination, and
enforcement. It provides automation of real-time status
tracking and reporting; configuration management of soft-
ware, documents, and test procedures; traceability of re-
quirements and change effects; testbed generation; and
component and system integration. It deals with people
(managers, developers, testers, and QA), processes (phases
and integration levels), and products (software, documents,
and test procedures). The system was designed to be portable
(currently runs on the VAX-11/780 with VMS, on ROLM and Data
General with AOS/VS, on IBM with MVS, and on Intel with

L. Jordan
CSC
15 of 20

XENIX). 1In the area of distributability and interoperabil-
ity, the tool sets for different hosts may be different but
the functionality is assumed to be the same (the framework
only operates on tool products and does not contain tools
itself). Filters and standard forms can be used for adjust-
ment.

Ms. Reedy reported productivity figures for 3 projects rang-
ing from 121 to 384 LOC per day. In terms of level of ef-
fort, she reported first-year resource costs for the manual
environment of 56 staff-months versus 29 for the automated
environment. Annual recurring costs were 60 staff-months
for the manual environment versus 24 for the automated en-
vironment. Cumulative costs for 24 project-months were
$900,000 for manual implementation versus $500,000 for auto-
mated implementation. After the presentation, there was
some spirited discussion on the productivity figures cited.

Mr. Lloyd Baker of TRW Defense Systems Group reported on an
evaluation of an integrated environment for the specifica-
tion and life-cycle development of software (One Approach
for Evaluating the Distributed Computing Design System
(DCDS)). DCDS consists of integrated methodologies, lan-
guages, and an integrated tool set, Users can produce spec-
ifications for system requirements, software requirements,
distributed architectural designs, detailed module designs,
and tests. Five languages support the concepts for each of
the methodologies and are used to express the requirements,
designs, and tests. All languages use the same constructs
and syntax. (More information on the operation of DCDS is
available in the April 1985 issue of IEEE Computer Magazine.)

L. Jordan
CSC
16 of 20

DCDS was compared with three other commercially available
products using a list of evaluation criteria partitioned
into three classes:

) Factors lending credibility to the product
° Costs of acguiring and using the product
° Benefits of the product

The criteria were weighted (high, medium, low), and the
products were scored and evaluated (better, acceptable, de-
ficient). Development costs included costs for learning the
system, documenting results, and fixing errors, as well as
normal development work. Mr. Baker presented the detailed
evaluation results for each of the systems for 21 different
factors.

The topic of the last session was Experiments with Ada.

Mr. Dan Roy of Century Computing, Inc., presented an assess-
ment of a 1200-line (of Ada code) project that used George
Cherry's Process Abstraction Methodology for Embedded Large
Applications (PAMELA) and DEC's Ada Compilation System (ACS)
under VAX/VMS (An Ada Experiment With MSOCC Software). The
requirements analysis was performed with the standard

De Marco structured analysis. Ada was used as a data defi-
nition language to produce a data dictionary during the re-
quirements phase. A special package (the TBD package) aided
the top-down design of the data structure. Preliminary and
detailed design templates were created and proved very use-
ful. Ada was used as a program design language (PDL) that
was then refined into detailed code in the normal staged
manner. The tools and templates for Ada constructs (devel-
oped at the start of the project) had a dramatic effect on
productivity and code consistency (30 LOC per day during
development, 13 LOC per day from cradle to grave). Ada
training was difficult and complex.(none of the standard
training devices alone were adequate). He tried a number

L. Jordan
CSC
17 of 20

of compilers with poor results before going to ACS and
achieving results reasonably approximating FORTRAN compiler
speeds and acceptable gquality.

Mr. Mike McClimens of MITRE Corporation described an experi-
ment to study a standard CAIS implementation (Observations
from a Prototype Implementation of the Common APSE Interface
Set (CAIS)). CAIS is a tool interface to operating systems
that encapsulates machine dependencies such as data base
access. He first described the background and history of
its development. CAIS is defined as a set of Ada package
specifications and a description of associated semantics.
The underlying model is a directed graph with attributes.
Nodes can be files, processes, or directories. Both graph
nodes and edges have attributes. CAIS provides node manage-
ment, process management (spawn/invoke, abort/suspend/
resume), I/0O (text, direct, sequential, scroll and page for
devices), and list utilities (abstract data type, heteroge-
neous list of items). It does not provide support for con-
currency, memory management, or interrupts for Ada or
scheduling, paging/segmentation, or low-level I/O for oper-
ating systems or a data base management system.

Mr. McClimans then described a number of objectives for work
on the system during 1985 and the technical approach used to
attain those objectives. He noted that the learning curve

for CAIS will be significant and that overall conceptual
consistency is good.

Dr. William Agresti of CSC described an experiment that is
underway in the SEL to develop a system in parallel in Ada
and in FORTRAN (Measuring Ada as a Software Development
Technology in the SEL). The size of the project is estimated
as 40 KSLOC (FORTRAN); it will take from 18 to 24 months to
complete with a staff of seven and will require 8 to

10 staff-years of effort. Forms will be collected for the

L. Jordan
CSC
18 of 20

SEL data base. A study team is providing training, plan-
ning, and evaluation. The Ada team is more experienced
overall than the FORTRAN team but is less experienced in the
particular application. At the time of the presentation,
the Ada project was completing design and beginning code and
test; the FORTRAN project'was completing code and test and
beginning integration and system test. The schedule differ-
ence is attributed to Ada training. The training material
and approaches were described. Training included the devel-
opment of a small electronic mail system to gain hands-on
eéxperience with the Ada language and took 2 months of full-
time work.

Dr. Agresti provided statistics describing the training
exercise. The electronic mail system was originally devel-
oped as 1000 to 2000 SLOC in SIMPL. 1In Ada, the system was
5730 SLOC (1400 executable statements) and took 1900 hours
to develop (including 570 hours of training). The cost was
950 hours per 1000 executable statements (1360 including
training) with an error rate of 9 errors per 1000 executable
statements; this can be compared with 720 hours and 12 er-
rors per 1000 executable statements for FORTRAN. The dis-
tribution of effort for design, code, and test was 60, 18,

and 22 percent for Ada and 33, 33, and 34 percent for
FORTRAN.

During the panel discussion at the end of the session, it
was noted that object-oriented design does not replace PDL.
Ada performance seems to be a major issue, and its suitabil-
ity to various applications must be investigated. The ren-
dezvous on the VAX compiler is 70 times longer than the
procedure call, for example. Many of the current areas of
poor performance will probably be considerably improved in
future implementations, so it is not wise to make major
decisions based on current implementations. Tasking and
other processes may be slow, but optimization is good for

L. Jordan
CSC
19 of 20

&

g
S

s
e
.

N ';:f:,'} .
compiled code and may offset the slow performance. It was
also mentioned that, in benchmark testing, The DEC Ada com~
piler is within 10 to 20 percent of FORTRAN speeds.

L. Jordan
CSC
20 of 20

' N86-30358

PANEL #1

RESEARCH IN THE SOFTWARE ENGINEERING
LABORATORY (SEL)

V. Basili, University of Maryland
F. McGarry, NASA/GSFC

Measuring the Software Process and Product:
Lessons Learned in the SEL

Victor R. Basili
Department of Computer Science
University of Maryland

There are numerous reasons to measure the software development process and product. It is
important to create a corporate memory in the software area to support planning, e.g. to answer
questions about predicting the cost of a new project. We need to determine the strengths and
weaknesses of the current process and product, e.g. to determine what types of errors are
commonplace. We need to develop a rational for adopting and refining software development and
maintenance techniques, e.g. to help us decide what techniques actually minimize current
problems. We need to assess the impact of the techniques we are using, e.g. to determine
whether our current approach to functional testing actually does minimize certain classes of
errors, as we might believe it does. Finally, we should evaluate the quality of the software
process and product, e.g. to assess the reliability of the product after delivery.

We have tried to address all of these problems to varying degrees within the Software Engineering
Laboratory at NASA Goddard Space Flight Center, grouping studies into four general categories:
the problem, the process, the product, and the environment. Within these categories, we have
concentrated on three aspects of measurement in the SEL: visibility, quality, and technology.
With regard to visibility we have tried to better understand how software is being developed by
making the current practices and products as visible as possible using measurement. Areas of
measurement have been based upon models of the resources, errors, environment, problem and the
product. We have tried to assess the quality of the process and product by examining such
characteristics as productivity, reliability, maintainability, portability and reusability.

Technology has been measured in an attempt to ascertain how much, if at all, certain techniques
help in the development and to isolate those practices and tools which improve productivity.

To achieve the goals related to visibility, quality and technology, we have collected a variety of

data. Table 1 provides some idea of the type of data collected. The scope of activity in the SEL
from 1977 through 1984 is shown in Table 2.

Visibility Quality Technology
Resource Data Productivity How much do certain
Error Data Reliability techniques help?
Environment Maintainability

Characteristics Portability Which tools improve
Problem Complexity Reusability productivity?

Product Data

Table 1

V. Basili
Univ. of Maryland
1 of 37

SEL

1977 - 1984
Number of Projects 41
Number of Source Lines of Code 1.3 million
Development Cost $11 million
Number of Data Forms 30 thousand
Table 2

GOAL/QUESTION/METRIC PARADIGM

There have been many lessons learned in the the SEL about measurement but the most important
one has been the need for a goal-driven paradigm for data collection. That is data collection
must be driven top down. What you measure is based upon a carefully articulated set of goals
stating what it is you want to know and whether you can gather the appropriate and valid data
needed to answer your questions. Whenever we have violated these rules we either ended up
collecting data that was not used or have not been successful in performing our task. For
example we have discarded data, such as run analysis data, even though it may be interesting
information, it was not associated with a specific goal of the laboratory. Also we have not had
success in areas where there was not a carefully focused goal allowing us to control for extraneous
effects, e.g. measuring the effectiveness of detailed techniques.

The approach to measurement used in the SEL has been the goal / question / metric paradigm
[Basili & Weiss 1984] developed specifically to help us define the areas of study and help in the
interpretation of the results of the data collection process. The paradigm does not provide a
specific set of goals but rather a framework for stating goals and refining them into specific
questions about the software development process and product that provide a specification for the
data needed to help answer the goals.

The paradigm provides a mechanism for tracing the goals of the collection process, i.e. the
reasons the data are being collected, to the actual data. It is important to make clear at least in
general terms the organization’s needs and concerns, the focus of the current project and what is
expected from it. The formulation of these expectations can go a long way towards focusing the
work on the project and evaluating whether the project has achieved those expectations. The
need for information must be quantified whenever possible and the quantification analyzed as to
whether or not it satisfies the needs. This quantification of the goals should then be mapped into
a set of data that can be collected on the product and the process. The data should then be
validated with respect to how accurate it is and then analyzed and the results interpreted with
respect to the goals.

The actual data collection paradigm can be visualized by a diagram:

Goall Goal2 Goaln
Questionl . Question3 Questiond Question8
. Question6 .
. Question2 . . Questionb . Question?
dr . . . m9 d2 mb
ml m2 m3 md m2 d3 mb ml mb6 m7

Here there are n goals shown and each goal generates a set of questions that attempt to define
and quantify the specific goal which is at the root of its goal tree. The goal is only as well defined
as the questions that it generates. Each question generates a set of metrics (mi) or distributions

V. Basili
Univ. of Maryland
2 of 37

of data (di). Again, the question can only be answered relative to and as completely as the
available metrics and distributions allow. As is shown in the above diagram, the same questions
can be used to define different goals (e.g. Question6) and metrics and distributions can be used to
answer more that one question. Thus questions and metrics are used in several contexts.

Given the above paradigm, the data collection process consists of six steps:
1. Generate a set of goals based upon the needs of the organization.

The first step of the process is to determine what it is you want to know. This focuses the work
to be done and allows a framework for determining whether or not you have accomplished what
you set out to do. Sample goals might consist of such issues as on time delivery, high quality
product, high quality process, customer satisfaction, or that the product contains the needed
functionality.

2. Derive a set of questions of interest or hypotheses which quantify those goals.

The goals must now be formalized by making them quantifiable. This is the most difficult step in
the process because it often requires the interpretation of fuzzy terms like quality or produectivity
within the context of the development environment. These questions define the goals of step 1.
The aim is to satisfy the intuitive notion of the goal as completely and consistently as possible.

3. Develop a set of data metrics and distributions which provide the information needed to
answer the questions of interest.

In this step, the actual data needed to answer the questions are identified and associated with
each of the questions. However, the identification of the data categories is not always so easy.
Sometimes new metrics or data distributions must be defined. Other times data items can be
defined to answer only part of a question. In this case, the answer to the question must be
qualified and interpreted in the context of the missing information. As the data items are
identified, thought should be given to how valid the data item will be with respect to accuracy
and how well it captures the specific question.

4. Define a mechanism for collecting the data as accurately as possible

The data can be collected via forms, interviews, or automatically by the computer. If the data is
to be collected via forms, they must be carefully defined for ease of understanding by the person
filling out the form and clear interpretation by the analyst. An instruction sheet and glossary of
terms should accompany the forms. Care should be given to characterizing the accuracy of the
data and defining the allowable error bounds.

5. Perform a validation of the data

The data should always be checked for accuracy. Forms should be reviewed as they are handed
in. They should be read by a data analyst and checked with the person filling out the form when
questions arise. Sample sets should be set to determine accuracy the data as a whole. As data is
entered into the data base, validity checks should be made by the entering program. Redundant
data should be collected so checks can be made.

The validity of the datais a critical issue. Interpretations will be made that will eflect the entire
organization. One should not assume accuracy without justification.
6. Analyze the data collected to answer the questions posed

The data should be analyzed in the context of the questions and goals with which they are
associated. Missing data and missing questions should be accounted for in the interpretation.

The process is top down, i.e before we know what data to collect we must first define the reason
for the data collection process and make sure the right data is being collected, and it can be -
interpreted in the right context. To start with a set of metrics is working bottom up and does not
provide the collector with the right context for analysis or interpretation.

WRITING GOALS AND QUESTIONS:

In writing down goals and questions, we must begin by stating the purpose of the study. This
purpose will be in the form of a set of overall goals but they should follow a particular format.

V. Basili
Univ. of Maryland
3 of 37

The format should cover the purpose of the study, the perspective, and any important
information about the environment. The format might look like:

Purpose of Study: To (characterize, evaluate, predict, motivate) the (process, product, model,
metric) in order to (understand, assess, manage, engineer, learn, im/prove) it. E.g. To evaluate the
system testing methodology in order to assess it.

Perspective: Examine the (cost, effectiveness, correctness, errors, changes, product
metrics,reliability, etc.) from the point of view of the (developer, manager, customer, corporate
perspective, etc) E.g. Examine the effectiveness from the developer’s point of view.

Environment: The environment consists of the following: process factors, people factors, problem
factors, methods, tools, constraints, etc. E.g. The product is an operating system that must fit on

a PC, ete.
Process Questions:

For each process under study, there are several subgoals that need to be addressed. These include
the quality of use {characterize the process quantitatively and assess how well the process is
performed), the domain of use (characterize the object of the process and evaluate the knowledge
of object by the performers of the process), effort of use (characterize the effort to perform each
of the subactivities of the activity being performed), effect of use (characterize the output of the
process and the evaluate the quality of that output), and feedback from use (characterize the
major problems with the application of the process so that it can be improved).

Other subgoals involve the interaction of this process with the other processes and the schedule
(from the viewpoint of validation of the process model).

Product Questions:

For each product under study there are several subgoals that need to be addressed. These include
the definition of the product (characterize the product quantitatively) and the evaluation of the
product with respect to a particular quality (e.g. reliability, user satisfaction)

The definition of the product consists of:

1. Physical Attributes. e.g. size (source lines, #units, executable lines), complexity (control and
data), programming language features, time space.

2. Cost. e.g. effort (time, phase, activity, program)
3. Changes. e.g. errors, faults, failures and modifications by various classes.
4. Context. e.g. customer community, operational profile.

The evaluation is relative to a particular quality e.g. reliability. Thus the physical characteristics
need to be analyzed relative to these. Template questions for evaluation include:

How do you measure the quality?

Is the model used valid?

Are the measures used valid?

Are there checks?

Do they agree with the reliability data?

Thus a sample would be:

To evaluate the product (system) in order to assess its quality. Examine the reliability relative to
the customer’s point of view.

INVESTIGATION LAYOUT

The original goal/question/metric paradigm has been refined with experience (Basili & Selby 1984]
to include a step which provides for help in planning the type of investigative analysis possible
based upon the scope of the evaluation and the type of data available. Between steps 3 an 4
above is a step to plan the investigation layout and analysis methods. This step is important

because it allows the questions to reflect the types of result statements that can be used in the
quantitative analysis.

V. Basili
Univ. of Maryland
4 of 37

With all the different methods and tools available, we need to better quantitatively understand
and evaluate the benefits and drawbacks of each of them. There are several different approaches
to quantitatively evaluating methods and tools: blocked subject-project, replicated project, multi-
project variation, and single project case study. The approaches can be characterized by the

number of teams replicating each project and number of different projects analyzed as shown in
Table 3.

* *
* # of projects *
ey
* one more than *
* one *

ok ok ok Kk o ok ok ok ok R R ok ok ok Rk sk KR ok sk K ok ok ok ok ok ok o ok ok ok R ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok

* * *
of * one * single project multi-project *
t eams * : * variation *
* * *
per * more than * replicated blocked *
project * one * project subject-project *
* * *
3k 3k ok sk 3k ok ok sk ok ok ok ok ok ok dk sk ok sk sk okisk sk sk ok sk sk ak ok ok ok ok ok ok ok sk ok ok 3k ok ok sk ok ok ok sk ok ok sk ok ok ok ok ok ok ok ok %k k sk sk ok ok

Table 3

The blocked subject-project type of analysis allows the examination of several factors within the
framework of one study. Each of the technologies to be studied can be applied to a set of
projects by several subjects and each subject applies each of the technologies under study. It
permits the experimenter to control for differences in the subject population as well as study the
effect of the particular projects.

The replicated project analysis involves several replications of the same project by different
subjects. Each of the technologies to be studied is applied to the project by several subjects but

each subject applies only one of the technologies. It permits the experimenter to establish control
groups.

Multi-project variation analysis involves the measurement of several projects where controlled
factors such as methodology can be varied across similar projects. This is not a controlled
experiment as the previous two approaches were, but allows the experimenter to study the effect

of various methods and tools to the extent that the organization allows them to vary on different
projects.

The case study is where most methodology evaluation begins. There is a project and the
management has decided to make use of some new method or set of methods and wants to know
whether or not the method generates any improvement in the productivity or quality. A great
deal depends upon the individual factors involved in the project and the methods applied.

The approaches vary in cost and the level of confidence one can have in the result of the study.
Clearly, an analysis of several replicated projects costs more money but will generate stronger
confidence in the conclusion. Unfortunately, since a blocked subject-project experiment is so
expensive, the projects studied tend to be small. The size of the projects increase as the costs go
down so it is possible to study very large single project experiments and even multi- project
variation experiments if the right environment can be found.

The SEL has had some experience in almost all of theses categories. A blocked subject-project
study was the comparison of functional testing, structural testing and code reading [Basili & Selby
1985]. Here programs of 145 to 365 lines of code were analyzed by programmers using each of the
techniques on different types of applications, e.g. a text formatter, a plotter, an abstract data type
, and a database. The goal was to compare the techniques with respect to fault detection
effectiveness, fault detection cost, and classes of faults detected. We were also able to compare
performance with respect to the software type and the level of expertise of the programmer.

V. Basili
Univ. of Maryland
S of 37

Due to cost, we have only used the replicated project analysis to a limited degree. Here
comparisons have been of only two projects, e.g. comparing the development of a dynamic
simulator in the standard FORTRAN and Ada [Agresti 1985]. The limitation of only two
replicated developments makes the analysis more like a pair of cases studies than a true replicated
project analysis. However replicated-project analysis has been used at the University of Maryland
to study similar issues to the SEL on a smaller scale, e.g. the effect of a set of software
development methods on the process and product [Basili & Reiter 1981], [Basili & Hutchens 1983).

A large number of projects have fit into the multi-project variation category. Various subsets of
the 41 projects have been analyzed for a variety of purposes. Studies have been performed to
develop and evaluate cost models [Basili & Zelkowitz 1978], [Basili & Beane 1981], [Basili &
Freburger 1981}, [Bailey & Basili 1981], evaluate the relationships of product and process
variables [Basili, Selby & Phillips 1983], [Basili & Selby 1985a), [Basili & Panlilio-Yap 1985] ,
measure productivity [Basili & Bailey 1980|, characterize changes and errors {Weiss & Basili
1984, predict problems based upon previous projects [Doerflinger & Basili 1985], and evaluate
methodology [Bailey & Basili 1981], [Card, Church & Agresti 1986].

Many projects have been studied in isolation as cases studies, to analyze the effects of changes
and errors [Basili & Perricone 1984, to measure the testing approach [Ramsey & Basili 1985}, to
study the modular structure of programs [Hutchens & Basili 1985].

METHODOLOGY IMPROVEMENT PARADIGM

All this leads us to the following basic paradigm for evaluating and improving the methodology
used in the software development and maintenance process [Basili 1985].

1. Characterize the approach/environment.

This step requires an understanding of the various factors that will influence the project

evelopment. This includes the problem factors, e.g. the type of problem, the newness to the state
of the art, the susceptibility to change, the people factors, e.g. the number of people working on
the project, their level of expertise, experience, the product factors, e.g. the size, the deliverables,
the reliability requirements, portability requirements, reusability requirements, the resource
factors, e.g. target and development machine systems, availability, budget, deadlines, the process
and tool factors, e.g. what techniques and tools are available, training in them, programming
languages, code analyzers.

2. Set up the goals, questions, data for successful project development and improvement over
previous project developments.

It is at this point the organization and the project manager must determine what the goals are for
the project development. Some of these may be specified from step 1. Others may be chosen
based upon the needs of the organization, e.g. reusability of the code on another project,
improvement of the quality, lower cost.

3. Choose the appropriate methods and tools for the project.

Once it is clear what is required and available, methods and tools should be chosen and refined
that will maximize the chances of satisfying the goals laid out for the project. Tools may be
chosen because they facilitate the collection of the data necessary for evaluation, e.g.

configuration management tools not only help project control but also help with the collection
and validation of error and change data.

4. Perform the software development and maintenance, collecting the prescribed data and
validating it.

This step involves the collection of data by forms, interviews, and automated collection
mechanisms. The advantages of using forms to collect data is that a full set of data can be
gathered which gives detailed insights and provides for good record keeping. The drawback to
forms is that they can be expensive and unreliable because people fill them out. Interview can be
used to validate information from forms and gather information that is not easily obtainable in a
form format. Automated data collection is reliable and unobtrusive and can be gathered from

V. Basili
Univ. of Maryland
6 of 37

program development libraries, program analyzers, etc. However, the type of data that can be
collected in this way is typically not very insightful and one level removed from the issue being
studied.

5. Analyze the data to evaluate the current practices, determine problems, record the findings and
make recommendations for improvement.

This is the key to the mechanism. It requires a post mortem on the project. Project data should
be analyzed to determine how well the project satisfied its goals, where the methods were
effective, where they were not effective, whether they should be modified and refined for better
application, whether more training or different training is needed, whether tools or standards are
needed to help in the application of the methods, or whether the methods or tools should be
discarded and new methods or tools applied on the next project.

6. Proceed to step 1 to start the next project, armed with the knowledge gained from this and the
previous projects.

This procedure for developing software has a corporate learning curve built in. The knowledge is
not hidden in the intuition of first level managers but is stored in a corporate data base available
to new and old managers to help with project management, method and tool evaluation, and
technology transfer.

SEL EXPERIENCE

There are several areas where we believe we have been successful in the measurement area. We
have been able to collect reasonably accurate effort data especially with regard to weekly effort
hours. The attribution of that effort data to various phases and activities has also been reasonably
successful. :

We have been successful in extracting realistic histories of the errors and changes on a project but
have not been so successful in capturing detailed data on the effectiveness of the various error
detection techniques. The latter problem is due to the ad hoc way programmers tend to apply
techniques, not always recording all their efforts and to the common use of combinations of
techniques. We have been successful in capturing product characteristics but problem
characteristics are more difficult to capture. This is largely because they are difficult to quantify
and differentiate. We have been able to measure the relative level of the total set of methods
used in a project but less effective in isolating the effects of specific methods. This is because
most of the studies have been of the multi-project or case study type analysis and it has been
difficult to delineate the effects of a specific technique. One successful isolation of techniques was
the blocked subject-project study of testing techniques vs. reading.

With regard to the cost of the measurement program in the SEL, the data collection overhead to
tasks has been about 3% of total project cost and the processing of the data has been about 5%.
It is actually the analysis, interpretation and reporting of the results that have been the most
expensive in the SEL. This has been in the order of 15% to 20% but includes all the research
support, paper publication, report generation and technology transfer activities.

We have studied the question of what measurement can be automated, i.e. what tools can be
used to relieve the impact of measurement on the development or management team. We have
automated such things as computer utilization, code and changes growth, product complexity,
product characteristics (e.g. size) and source code change count. We have tried to automate but
failed with regard to error reporting, weekly resources, and effort by activity. Part of the lack of
success has been due to the variation in the development environments, i.e. the use of different
mainframes for development, the lack of consistent interactive development across projects. We
have not even tried to automate information about the techniques used, resources by component,
the environment, changes to the design and specifications, and problem complexity.

We have standardized on various measures of quality in the SEL. Productivity is defined as
developed source lines of code (SLOC) per day. Reliability is the number of errors after unit test
per 1000 SLOC. Maintainability is the average reported effort to modify or correct the software.
Reusability is the percent of components reused on new projects.

V. Basili
Univ. of Maryland
7 of 37

RECOMMENDATIONS AND CONCLUSIONS

From our experience within the SEL we would argue that software technology can and should be
measured: The measurement overhead to projects should be about 3%. You should not spend
excessive effort in trying to automate the data collection process. You should not collect and store
data that is not goal driven, i.e. you should collect the minimal set of data needed for the
purpose. You should measure top level information for all projects and detailed data for specific
experiments. It is difficult to measure the effects of specific techniques in a production
environment,

It is best to use the data to characterize the environment, making the problems visible. You

should set up both corporate and project goals and use the goal/question/metric paradigm to
articulate the process and product needs.

REFERENCES

[Agresti 1985]
William Agresti and the SEL Staff, Measuring Ada as a Software Development Technology
in the SEL, Eighth Minnowbrook Workshop on Software Performance Evaluation, Blue
Mountain Lake, New York, July 30, 1985.

[Bailey & Basili 1981]
John W. Bailey and Victor R. Basili, A Meta-Model for Software Development Resource
Expenditures, Proceedings of the Fifth International Conference on Software Engineering,
San Diego, California, pp 107-116, 1981.

[Basili 1985] v
Victor R. Basili, Quantitative Evaluation of Software Methodology, Proceedings of the
First Pan Pacific Computer Conference, 1985.

[Basili & Bailey 1980]
Victor R. Basili and John W. Bailey, The Software Engineering Laboratory: Measuring the
Effects of Software Methodologies within the Software Engineering Laboratory, Proceedings
of the Fifth Annual Software Engineering Workshop, November 1930.

[Basili & Beane 1981]
Victor R. Basili and John Beane, Can the Parr Curve Help with Manpower Distribution and
Resource Estimation Problems?, Journal of Systems and Software, pp 59-69, Volume 2,
1981.

[Basili & Freburger 1981]
Victor R. Basili and Karl Freburger, Programming Measurement and Estimation in the

Software Engineering Laboratory, Journal of Systems and Software, pp 47-57, Volume 2,
1978.

[Basili & Hutchens 1983]
Victor R. Basili & David H. Hutchens, An Empirical Study of a Syntactic Complexity
Family, IEEE Transactions on Software Engineering, pp 664-672, November 1983.
[Basili & Panlilio-Yap 1985]
Victor R. Basili and N. Monina Panlilic-Yap, Finding Relationships between Effort and
other Variables in the SEL, 9th COMPSAC Computer and Software Applications
Conference, pp 221-228, October, 1985.
[Basili & Perricone 1984]
Victor R. Basili and Barry T. Perricone, Software Errors and Complexity: An Empirical
Investigation, Communications of the ACM, pp 42-52, January, 1984.
[Basili & Reiter 1981]
Victor R. Basili and Robert W. Reiter, Jr., A Controlled Experiment Quantitatively

Comparing Software Development Approaches, IEEE Transactions on Software Engineering,
Vol. SE-7, No. 3, pp 299-320, May 1981.

V. Basili
Univ. of Maryland
8 of 37

[Basili & Selby 1984]
Victor R. Basili and Richard W. Selby, Jr., Data Collection and Analysis in Software
Research and Management, Proceedings of the American Statistical Association, pp 21-30,
1984.

[Basili & Selby 1985]
Victor R. Basili and Richard W. Selby, Jr., Comparing the Effectiveness of Software Testing
Strategies, University of Maryland Technical Report TR-1501, May 1985.

[Basili & Selby 1985a]
Victor R. Basili and Richard W. Selby Jr., Calculation and Use of an Environment’s
Characteristic Software Metric Set, IEEE Proceedings 8th International Conference on
Software Engineering, pp 386-391, August 1985.

[Basili, Selby & Phillips 1983]
Victor. R. Basili, Richard W. Selby, Tsai-Yun Phillips, Metric Analysis and Data Validation
Across FORTRAN Projects, IEEE Transactions on Software Engineering, pp 652-663,
November, 1983.

[Basili & Weiss 1984]
Victor R. Basili and David M. Weiss, A Methodology for Collecting Valid Software
Engineering Data, IEEE Transactions on Software Engineering, Vol. SE-10, No. 3, pp 728-
738, November 1984.

[Basili & Zelkowitz 1978]
Victor R. Basili and Marvin V. Zelkowitz, Analyzing Medium Scale Software Development,
IEEE 3rd International Conference on Software Engineering, pp 116-123, May 1978.

[Card, Church & Agresti 1986]
D.N. Card, V. E. Church, and W. W. Agresti, An Empirical Study of Software Design
Practices, IEEE Transactions on Software Engineering, pp 264-271, February 1986.

[Doerflinger & Basili]
Carl W. Doerflinger and Victor R. Basili, Monitoring Software Development Through
Dynamic Variables, IEEE Transaction on Software Engineering, pp 978-985, September
1985.

[Hutchens & Basili 1985]
David H. Hutchens and Victor R. Basili, System Structure Analysis: Clustering with Data
Bindings, IEEE Transactions on Software Engineering, pp 749-757, August, 1985.

[Ramsey & Basili 1985
James Ramsey and Victor R. Basili, Analyzing the Test Process Using Structural Coverage,
8th Internation Conference on Software Engineering, pp 306-311, August, 1985.

[Weiss & Basili 1985]
Evaluating Software Development by Analysis of Changes: Some Data from the Software

Engineering Laboratory, IEEE Transactions on Software Engineering, pp 157-168, February
1985.

V. Basili
Univ. of Maryland
9 of 37

Here is the goal, question, metric hierarchy:

Goall Goal2 Goaln
Questionl . Question3 Questiond Question8
. Questionb .
. Question2 . . Question5 . Question?
dr . . . m9 d2 md
ml m2 m3 mé m2 d3 mb mi mf m7

Here there are n goals shown and each goal generates a set of questions
that attempt to define and quantify the specific goal which is at the root
of its goal tree. The goal is only as well defined as the questions that
it generates. Each question generates a set of metrics (mi) or distribu-
tions of data (di). Again, the question can only be answered relative to
and as completely as the available metrics and distributions allow. As is
shown in the above diagram, the same questions can be used to define
different goals (e.g. Question6) and metrics and distributions can be used
to answer more that one question. Thus questions and metrics are used in
several contexts.

Given the above paradigm, the data collection process consists of six
steps:

Visibility Quality Technology
Resource Data Productivity How much do certain
Error Data Reliability techniques help?
Environment Maintainability

Characteristics Portability Which tools improve
Problem Complexity Reusability productivity?

Product Data

Table 1

How do you measure the quality?

Is the model used valid?

Are the measures used valid?

Are there checks?

Do they agree with the reliability data?

* *
* # of projects *

3k %k %k %k ok ok ok ok ok ok ok %k ok kK sk ok ok %k ok ok sk 3K ok ok ok ok ok skook sk ok sk ok sk kR ok k

* one more than *

* one *

% 3k sk ok ok ok ok ok ok ok sk sk ok ok sk ok ok sk ok ok ok ok skesk ok ok ok sk ok ok s ok dk ok sk sk sk sk 3k K ok sk sk sk sk 3k ak ok sk ok sk sk %k ok dkook sk ok
% * %*

of * one * single project multi-project *
t eams * * variation *

V. Basili
Univ. of Maryland
10 of 37

* * *
per * more than * replicated blocked *
project * one * project subject-project *

* * *
sk ok o ok ok ok ok ok Rk ok ok ok ok ok ok ok ok ok sk sk ok ok ok sk KRR ok ok ok ok ok sk ok R KKk Rk ok kR ok

Table 3

V. Basili
Univ. of Maryland
11 of 37

THE VIEWGRAPH MATERIALS

FOR THE

VIC BASILI PRESENTATION FOLLOW

MEASURING THE SOFTWARE PROCESS AND PRODUCT:
LESSONS LEARNED IN THE SEL

VICTOR R. BASILI
DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF MARYLAND

V. Basili
Univ. of Maryland
12 of 37

WHY MEASURE SOFTWARE?

CREATE A CORPORATE MEMORY (SUPPORT PLANNING)
E.G., HOW MUCH WILL A NEW PROJECT COST?

DETERMINE STRENGTHS AND WEAKNESSES OF THE CURRENT
PROCESS AND PRODUCT
E.G., ARE CERTAIN TYPES OF ERRORS COMMONPLACE?

DEVELOP A RATIONALE FOR ADOPTING/REFINING TECHNIQUES
E.G., WHAT TECHNIQUES WILL MINIMIZE CURRENT PROBLEMS?

ASSESS THE IMPACT OF TECHNIQUES
E.G., DOES FUNCTIONAL TESTING MINIMIZE CERTAIN
ERROR CLASSES?

EVALUATE THE QUALITY OF THE PROCESS/PRODUCT
E.G., WHAT IS THE RELIABILITY OF THE PRODUCT AFTER
DELIVERY?

V. Basili
Univ. of Maryland
13 of 37

ALI19vsSn3y V1lva 13Nnaodd

CALIATLIONAOYd JAOHHWI STT00L HOIHM ALITI9GVLd0d ALIX3TdWOD WIT90dd
ALTTTIGYNIVINIVW SOILSTY3LIOVHVHO LNIWNOJIANI

¢dT13H : ALTTIEYIT3Y Vivad dod¥3

SINDINHI3L NIVL¥3ID 0Q HONW MOH ALIATLIONA0Yd Y1lvad 324n0s3y
AS0T0ONHI31 ALITIVNO ALITTIEISIA

73S 3FHL NI S3YNSVIW 40 S123dSVY ¢

Univ. of Maryland

V. Basili
14 of 37

A.-

d3aIAOdd ONINIVYHL

“1dJ ‘ABAI)IANLONYLS NOILVZINVOHO
d3Ilddv SINVINHI3L

ag3sn saool

, SINDINHOEL,

ALIX3TdW0D LIONA0Yd

ALIX3TdW0D W3T90dd

INIWNOYIANI

IWIL A9 3ZIS

(SININO4WOD 73003 40 S3NIT) 3IZIS
S31vd 3ISVHJ

-]

SOILSTYILOVHVHI 133rodd

SIONVHO NOILYII4103dS ,
SIONVHO N9ISIC ,
SIONVHD JHVYMLLOS |,
3IANLINOVW |
JdAL
INIL AG
SIUNTIVA THYMLHOS |,

V1V 3I9NVHO/H0HY3

NOILVZITILN ¥31NdWOI
ININOAWOD A9 SUNOH
ALTATLOV A€ SYNOH

(]

o

NOSY¥3d A9 'SYH ATIIIM

Vivd 324N0S3y

vivd 123rodd 40 SISSVIO

Univ. of Maryland

V. Basili
15 of 37

000°0¢
(S¥VT10a 18) WIT$

J01S W ¢'T

Ih

Univ. of Maryland

V. Basili
16 of 37

a@3L123717100 ,SWY04, vivd

1500 IN3IW40T3A3Q

3Z1S S123royd viol

S103rodd 40 d3gWNN

h86T-£461
T3S NI @31anLs S123royd

SINDINHO3L
d3TIv1i3a 40 SSINIAILIIL4T “'9'3 SNI04 ILVIU40¥ddV

1ON SVYM F¥3IHL JYIHM SVYIYVY NI SS3IO0NS AVH LON 3IAVH

SISATYNY NNY
'9'3 7dN WOLLOE QI¥IHLYD VIVA AVMY NMOYHL 3AVH

JON3ATAT

NOILD31710] V1iVa ¥04 WOHIAVYVd N3IAIYA-TV09 V d0713A3dA

d3NYVY3T NOSSIAT HOrvW

Univ. of Maryland

V. Basili
17 of 37

//////////Gl //////////;)73\\\\\\
aef Q2 \\\\\\\\63 Qy Q

My M2 Mz My
Q |Q | Q3 ... |Qq
Gy | Mg.M2 Mg M2
M3
G2 Mo, Mg
G3
GN) J

GOAL/QUESTION/METRIC PARADIGM

5

MANAGEMENT-ORIENTED GOAL
(CHARACTERIZE ERRORS)

SPECIFIC QUESTION
OR HYPOTHESIS

(WHAT PHASE WAS GREATEST
SOURCE OF ERRORS?)

QUANTITATIVE METRIC
OR DISTRIBUTION
(ERROR DISTRIBUTION BY PHASE)

V. Basili
Univ. of Maryland
18 of 37

SEL
DATA COLLECTION METHODOLOGY

ESTABLISH THE GOALS OF DATA COLLECTION: E.G..
CHARACTERIZE CHANGES DURING SOFTWARE DEVELOPMENT.

DEVELOP A LIST OF QUESTIONS OF INTEREST: E.G..
WHAT PERCENTAGE OF THE CHANGES WERE MODIFICATIONS

AND ERRORS?

DETERMINE THE METRICS AND DISTRIBUTIONS NEEDED TO
ANSWER THE QUESTIONS.

DESIGN AND TEST DATA COLLECTION FORM.

COLLECT AND VALIDATE DATA.

ANALYZE AND INTERPRET THE DATA

V. Basili
Univ. of Maryland
19 of 37

SAMPLE GOALS

ON TIME DELIVERY

HIGH QUALITY PRODUCT

HIGH QUALITY PROCESS

CONTAINS NEEDED FUNCTIONALITY

SALABLE PRODUCT

CUSTOMER SATISFACTION

CHARACTERIZE ERRORS AND CHANGES TO LEARN
FROM THIS PROJECT

LOW COST

TIMELINESS

V. Basili
Univ. of Maryland
20 of 37

CHARACTERIZING GOALS

CHARACTERIZE RESOURCE USAGE ACROSS THE PROJECT
CHARACTERIZE CHANGES AND ERRORS ACROSS LIFE CYCLE
CHARACTERIZE THE DIMENSIONS OF THE PROJECT
CHARACTERIZE THE EXECUTION TIME ASPECTS
CHARACTERIZE THE ENVIRONMENT

QUALITY GOALS

PRODUCTIVITY GOALS

MAINTENANCE GOALS

TOOL AND METHOD EVALUATION GOALS
COST-ESTIMATION GOALS

ETC.

V. Basili
Univ. of Maryland
21 of 37

Quantitative Analysis Methodology

e Methodology for data collection & quantitative analysis

1. Formulate goals

2. Develop and refine subgoals & questions

3. Establish appropriate metrics

4. Plan investigation layout & analysis methods

5. Design & test data collection scheme

6. Perform investigation concurrently w/ data validation
7. Analyze data

e Goal/question/metric paradigm defines analysis purpose,
required data, and context for interpretation

e Questions are coupled with measurable attributes and reflect
the types of result statements from quantitative analysis

e Identifies aspects of a well-run analysis

o Intended to be applied to different types of studies
from a variety of problem domains

V. Basili
Univ. of Maryland
22 of 37

Analysis Classification: Scopes of Evaluation

#Teams per #Projects
Project
One More Than
One
One Single Project Multi-Project
Variation
More Than Replicated Blocked
One Project Subject-Project
V. Basili

Univ. of Maryland
23 of 37

GOAL SETTING TEMPLATE

PURPOSE OF STUDY:
TO (CHARACTERIZE., EVALUATE, PREDICT. MOTIVATE) THE
(PROCESS., PRODUCT, METRIC) IN ORDER TO (UNDERSTAND.
ASSESS, MANAGE., ENGINEER, LEARN, IMPROVE., COMPARE) IT
E.G., TO EVALUATE THE SYSTEM TEST METHODOLOGY IN ORDER
TO ASSESS IT.

PERSPECTIVE:
EXAMINE THE (COST., EFFECTIVENESS, RELIABILITY, CORRECTNESS.,
MAINTAINABILITY, EFFICIENCY, ETC.) FROM THE POINT OF
VIEW OF THE (DEVELOPER, MANAGER., CUSTOMER, CORPORATION.
ETC.)
E.G., EXAMINE THE EFFECTIVENESS FROM THE DEVELOPER’'S POINT
OF VIEW,

ENVIRONMENT:
LIST THE VARIOUS PROCESS FACTORS., PROBLEM FACTORS. PEOPLE
FACTORS, ETC.

V. Basili
Univ. of Maryland
24 of 37

1

2)

3)

1)

6)

HIERARCHY

DOMAIN

INDUSTRY-WIDE

CORPORATE

UNIT MANAGEMENT

PROJECT MANAGEMENT

PROJECT TEAM

INDIVIDUAL

OF

PERSPECTIVES

CONCERNS

=~ TECHNOLOGICAL CAPABILITY.

INTERNATIONAL COMPETITION

- PROFIT., MARKET POSITION

- RESOURCE ALLOCATION

- PROGRESS AGAINST MILESTONES

- INTEGRATION OF INDIVIDUAL
PRODUCTS

- PRODUCT QUALITY., WORK RATE

V. Basili
Univ. of Maryland
25 of 37

GOAL AREA: PROCESS QUALITY
PURPOSE:
PERSPECTIVE:
ENVIRONMENT:
DEFINITION OF THE PROCESS:
QUALITY OF USE
DOMAIN OF USE
KNOWLEDGE OF DOMAIN
VOLATILITY OF DOMAIN
COST OF USE
EFFECTIVENESS OF USE
RESULTS
QUALITY OF RESULTS
FEEDBACK FROM USE
LESSONS LEARNED
MODEL VALIDATION
INTEGRABILITY WITH OTHER TECHNIQUES

V. Basili
Univ. of Maryland
26 of 37

EXAMPLE

PURPOSE OF STUDY: TO EVALUATE THE SYSTEM TEST

METHODOLOGY IN ORDER TO ASSESS IT'S EFFECT

PERSPECTIVE:

EXAMINE THE EFFECTIVENESS FROM THE

DEVELOPER'S POINT OF VIEW

DEFINITION OF PROCESS:

1. QUALITY OF USE

1.1
1.2

1.3

llq

1.5

HOW MANY REQUIREMENTS ARE THERE?
WHAT 1S THE DISTRIBUTION OF TESTS OVER
REQUIREMENTS?

NUMBER OF TESTS/REQUIREMENT
WHAT IS THE IMPORTANCE OF TESTING EACH
REQUIREMENT?

RATE 0-5
WHAT 1S THE COMPLEXITY OF TESTING EACH
REQUIREMENT?

RATE 0-5

SUBJECTIVE

FANOUT TO COMPONENTS AND/OR NAMES
1s Q1.2 conSISTENT wITH Q1.3 anp Q1,47

V. Basili

Univ. of Maryland

27 of 37

EXAMPLE (CONT'D)

2l

DOMAIN OF USE

KNOWLEDGE

2.1 HOW PRECISELY WERE THE TEST CASES KNOWN
IN ADVANCE?

RATE 0-5

2.2 HOW CONFIDENT ARE YOU THAT THE RESULT IS
CORRECT?

VOLATILITY:

2.5 ARE TESTS WRITTEN/CHANGED CONSISTENT WITH
Q1.3 anp Q1.47

2.4 WHAT PERCENT OF THE TESTS WERE RERUN?

COST OF USE

3,1 COST TO MAKE A TEST

3.2 COST TO RUN A TEST

3.3 COST TO CHECK A RESULT

3.4 coST TO ISOLATE THE FAULT

5.5 COST TO DESIGN AND IMPLEMENT A FIX

3.6 COST TO RETEST

V. Basili
Univ. of Maryland
28 of 37

EXAMPLE (CONT'D)

L,

EFFECTIVENESS OF USE

QUALITY OF RESULTS

4.1
4,2
4.3

4.4

HOW MANY FAILURES WERE OBSERVED?

WHAT PERCENT OF TOTAL ERRORS WERE FOUND?
WHAT PERCENT OF THE DEVELOPED CODE WAS
EXERCISED?

WHAT IS THE STRUCTURAL COVERAGE OF THE
ACCEPTANCE TESTS?

RESULTS:

4.5

4.6

ql7

4,8

HOW MANY ERRORS WERE DISCOVERED DURING EACH
PHASE OF DEVELOPMENT ANALYZED BY CLASS OF
ERROR AND IN TOTAL?

WHAT 1S THE NUMBER OF FAULTS PER LINE OF CODE
AT THE END OF EACH PHASE? ONE MONTH, SIX
MONTHS, ONE YEAR?

WHAT IS THE COST TO FIX AN ERROR ON THE
AVERAGE AND FOR EACH CLASS OF ERROR AT EACH
PHASE?

WHAT 1S THE COST TO ISOLATE AN ERROR ON THE
AVERAGE AND FOR EACH CLASS OF ERROR AT EACH

PHASE?

V. Basili
Univ. of Maryland
29 of 37

GOAL AREA: HIGH QUALITY PRODUCT
PRODUCT
PURPOSE OF STUDY:
ENVIRONMENT
DEFINITION OF PRODUCT:
PHYSICAL ATTRIBUTES
COST
CHANGES AND ERRORS
CONTEXT
CUSTOMER COMMUNITY
OPERATIONAL PROFILES
PERSPECTIVE:
MAJOR MODEL(S) USED:
VALIDITY OF THE MODEL FOR THE PROJECT
VALIDITY OF THE DATA COLLECTED
MODEL EFFECTIVENESS
SUBSTANTIATION OF THE MODEL

V. Basili
Univ. of Maryland
30 of 37

3.

IMPROVING METHODOLOGY, PRODUCTIVITY AND QUALITY
THROUGH PRACTICAL MEASUREMENT

CHARACTERIZE THE ENVIRONMENT

SET UP THE GOALS FOR IMPROVEMENT
E.G,, HIGHER QUALITY, LOWER COST, ON-TIME DELIVERY

REFINE AND ADJUST APPROACH/ENVIRONMENT TO
SATISFY THE GOALS

BUILD THE SYSTEM, COLLECT AND VALIDATE THE DATA

INTERPRET AND ANALYZE THE DATA TO CHECK IF THE.
GOALS ARE SATISFIED
EVALUATE METHODOLOGY., PRODUCTIVITY AND QUALITY., ETC,

GO TO STEP 1, ARMED WITH NEW KNOWLEDGE

V. Basili
Univ. of Maryland
31 of 37

SEL SUCCESSES/FAILURES

EFFORT DATA
° WEEKLY EFFORT HOURS CAN BE ACCURATELY CAPTURED
° EFFORT BY PHASE AND ACTIVITY CAN BE IMPROVED

ERROR/CHANGE DATA
° CAN EXTRACT REALISTIC HISTORY OF ERRORS AND CHANGES
® CANNOT CAPTURE DETAILED TECHNIQUE INFORMATION
(FOR ERROR DETECTION)

PROJECT CHARACTERISTICS
° PRODUCT CHARACTERISTICS CAN BE ACCURATELY CAPTURED
° PROBLEM CHARACTERISTICS DIFFICULT TO CAPTURE

TECHNIQUES
® CAN MEASURE RELATIVE LEVEL OF TOTAL METHODOLOGY
® DIFFICULT TO ISOLATE EFFECTS OF SPECIFIC METHODS

V. Basili
Univ. of Maryland
32 of 37

COST OF DATA COLLECTION
° OVERHEAD TO TASKS DOES NOT HAVE TO EXCEED 3%
° PROCESSING OF DATA CAN BE CUT TO 5%

° ANALYSIS, INTERPRETATION AND REPORTING
MOST EXPENSIVE
° 15 - 20% IN SEL
® INCLUDES RESEARCH SUPPORT
PAPER PUBLICATION
TECHNOLOGY TRANSFER

V. Basili
Univ. of Maryland
33 of 37

INIFWIOUNYW ¥0 WV3IL IN3IWH0T3A3d OL LOVAWI ANV JA3IT3d Ol 3dNd320dd ¥0 T00L SIIIAWI
ALIX31dW0D WITE0AUd

$93dS/N91S3A OL SIONVHD
INIWNOYTANS ALTAILOV A€ 180443 INNOD IONVHD 300D 3J¥NOS |
ININOAWOD AS SIDUN0SIY $304N0S3Y ATN3IM (*'371S) SOILSI¥ILOVEVHI LONAOYd |,
q3sn SINDINHIAL ONTLYOdIY ¥O¥¥3 ALIX31dWOD LONQ0¥d |,
VANV SAVMIY ERICEREIIEIEH HLMOdD/S3ONVHI 3G02 ,
_ ! NOILYZITILN ¥3LNdWOD |,
TIIVROLINY LON TILVWOLNY
, A907TOQOHLIW, SI1.LSTHILIVHVHD V1V JONVHI/H0¥Y3 S$IMNSYIW 3D¥N0STY
3Z1s 30¥N0STY HILNAWOD
308N0S 40 HLMO¥O |, Q3LYWOLNY
3000 37¥N0S OL
SIONVHD ATMIIM
ALIX3TdWOD 300D
0 ° IN3INOd
. -WO0D Ag LH0443
SINDINHIIL 04NI JONVHI SHNOH ATHIaM -
aasn s700L SILVQ 3ISYHd ViVa H0¥Y3 3ISVHd A9 180443

¢LINIWIANSYIW LILVWOLNY 3IM NVD

V. Basili

Univ. of Maryland

34 of 37

S123rodd MaN
NO d3Sn3y¥ SLININOJIWOD JO ¥

4Ivd3yd 01 1¥0443
JYVYML40S (LI3Y¥Y0I) AJIAOW
0L 1¥0443 @3L¥0d3y 3JOVHIAV

JONVHO Ol 1d0443

207S QQOT(LS3L
LINN ¥3L4Y) S¥0¥¥3 30 ¥3IGWNN

AV{d NOS¥3d/3071S @3d0713A3dA

73S NI ,ALITIVND, 3JYVYMLI0S 40 SIYNSVIW

AL114vsn3y

ALITTIGYNIVLINIVW

ALIT19VIN3Y

ALIATLONAOYd

)

L}

°

©

Univ. of Maryland

V. Basili
35 of 37

(SINDINHI3IL ONILS3AL 7'9'3) SINIWIYILX3 JI4123dS
404 Viva Q37IVL3Id - SL23r0dd TV ¥04 NOILVWYO4NI T3A3T dOL I¥NSYIW

SINDINHIO3L 3IYVYML40S IJId4133dS IYNSY3IW OL 1INJ1441d

(V1vVa 40 L3S WAWINIW 1237702)
N3ATHEA-IV0D 10N SI 1VHL ,V1Vd, 3401S/1337700 LON Od

NOILJ33T77700 FLVWOLNY OL ONIAYL NI 1d0443 JAISSIOX3I AN3dS L1,NOd

2+¢ 1NOEVY S123r0dd IN3IW40T3IA3A Ol AVIHYIAO LINIWIUNSVYIW

3¥NSVYIW 39 AINOHS ANV NVI (ADO0TONHI3IL) 3IYVYMLHO0S

JONITH3IdX3 T3S OI4133dS

Univ. of Maryland

V. Basili
36 of 37

S
:“"L-"TN: ?.;!-3 & “5"{

OVERALL RECOMMENDATION

USE DATA TO CHARACTERIZE THE ENVIRONMENT., MAKING
PROBLEMS VISIBLE

SET UP CORPORATE AND PROJECT GOALS AND USE
GOAL/QUESTION/DATA PARADIGM TO ARTICULATE
PROCESS AND PRODUCT NEEDS

V. Basili
Univ. of Maryland
37 of 37

STUDIES AND EXPERIMENTS IN THE*N86 - 30359

SOFTWARE ENGINEERING LAB (SEL)

BY
FRANK E. MCGARRY
NASA/GSFC
AND
DAVID N. CARD
COMPUTER SCIENCES CORPORATICN (CSC)

ABSTRACT

The Software Engineering Laboratory (SEL) is an organization
created nearly 10 years ago for the purpose of identifying,
measuring and applying quality software engineering techniques
in a production environment (Reference 1). The members of the
SEL include NASA/GSFC (the sponsor and organizer), University of
Maryland, and Computer Sciences Corporaticn. Since its inception
the SEL has conducted numerous experiments, and has evaluated a
wide range of software technologies. This paper describes
several of the more recent experiments as well as some of the
general conclusions to which the SEL has arrived.

1.0 Background (Chart 1)

Over the past 9 years, the SEL has conducted studies in 4 major
areas of software technology:

1. Software Tcols and Environments
2. Development Methods

3. Measures and Profiles

4, Software Models

Most of these studies have been conducted by utilizing specific

approaches, tools or models to production software problems within
the flight dynamics environment at Goddard. By extracting

detailed information pertaining to the problem, environment,

process and product, the SEL has been able to gain some insight

into the relative impact that the various technologies may have

on the quality of the software being developed.

More detailed descriptions of the overall measurement process as
well as the SEL studies may be fcund in References 1, 2, and 3.
This brief paper will describe some of the more recent, specific
experiments that have been conducted by/in the SEL and just what
types of insight may be provided in areas of:

Tools and Environments
Scftware Testing
Design Measures
General Trends

W N ~

*The work described in this paper has been extracted from reports and studies carried
out by members of the SEL.

F. McGarry
NASA/GSFC
1 of 37

%
a*
TR
? %
w
A
£

Cihant
&<
g

TYPE OF SCIENTIFIC, GROUND-BASED,
SOFTWARE: MODERATE RELIABILITY AND RESPONSE REQUIREMENTS

LANGUAGES: 85% FORTRAN,

COMPUTERS: IBM MAINFRAMES,

PROJECT CHARACTERISTICS:
DURATION (MONTHS)
EFFORT (STAFF-YEARS)

SIZE (1000 LOC)
DEVELOPED
DELIVERED

STAFF (FULL-TIME
EQUIVALENT)
AVERAGE
PEAK
INDIVUALS

APPLICATION EXPERIENCE
(YEARS)

MANAGERS

TECHNICAL STAFF

OVERALL EXPERIENCE
(YEARS)

MANAGERS
TECHNICAL STAFF

FIGURE 1.

15% ASSEMBLER MACROS

BATCH WITH TSO
AVERAGE HIGH
16 21
& 24
57 142
62 159
5 11
10 24
14 29
6 7
4 5
10 14
9 11

FLIGHT DYNAMICS SOFTWARE

INTERACTIVE GRAPHIC,

LOW

22
33

UR N

F. McGarry
NASA/GSFC
2 of 37

The F1ight Dynamics environment typically is a FORTRAN environ-
ment building software systems ranging in size from 10,000 to
150,000 1ines of code - (see Figure 1).

2.0 Software Tools/Environments* (Chart 2 and Reference 4)

One of the more interesting studies that was conducted within the
past several years, was one in which an attempt was made to
measure the impact of several development approaches (related to
environment support) on the quality of software within the flight
dynamics discipline.

The three points of study include:

1. Software Tools
2., Computer Support
3. Number of Terminals/Prcgrammer

The quality of the product was measured using 4 attributes
including:

1. Productivity - Number of developed 1lines of cocde per man
month,

2, Reliability - Number of errors reported per 1,000 1ines
of code.

3. Effort to Change - (Average number of man hours
required to make a software modification).

4, Effort to Repair (Average number of man hours required to
correct an identified error)

2.1 Experiment Description (Chart 3)

In carrying out the study, a review of all projects for which
detailed project history data was available and complete was
undertaken. From the completed 50 projects, 14 were selected
because of the quality and completeness of the relevant data and
more importantly because of the general similarity of
complexity of problems that the software was attempting to solve.

Fourteen projects ranging in size from 11,000 1ines of code to
136,000 1ines of code were selected. These projects had
information describing the environment under which they were
developed and additional information such as the number and
quality of automated tools utilized and the number of interactive
terminals available to the programming staff.

*Lead investigators of this work included F. McGarry and J. Valett of NASA/GSFC
and D. Hall of NASA/HQ.

F. McGarry
NASA/GSFC
3 of 37

The 14 projects selected all dealt with tasks in solving attitude
determination and control related problems. The projects were
completed between the years 1978 to 1984,

The projects alsc had detailed information as to manhours, size,
error history, and effort required to make all changes and
corrections to the software.

2.2 Project Variations (Chart 4)

In attempting to characterize each of the develcpment projects,

a ranking scheme was used for this particular study. It was
found that the availability of terminals ranged from a low of
less than 1 per 8 programmers to a high of better than 1 per 2
programmers,

There were a total of 21 tools considered in this study that
were applied by at least some of the projects studied. Such
tools as documentation aids, preprocessors, test generators and
program optimizers were among the toocls considered.

It was also found that the distribution of level of use for tools
rangec¢ froma low of only 1 or 2 automated tools being used, to a
high of more than € automated tools being used. These tools also
were rated as far as the actual usage by the particular project
and also there was a rating for each tool of the assessed
'quaiity' of the particular toel. Quality here was rated for
each tool on a scale of 1 to 5 and was a subjective rating
determined by the software manager.

There were a total of 11 characteristics that made up the
computer support measure. These 11 included:

o Terminal Accessibility o Offline Storage

© Turn around time o Interactive Availability

o Compiler Speed o Terminals/programmers

o System Reliability (2 measures) o Avg. CPU Utilization

oDirect Storage o Accessibility of all
resources

2.3 Study Results (Chart 5)

The results of this particular study were encouraging on the one
hand and quite perplexing on the other.

2.3.17 Tool usage results showed that as the number and quality

E. McGarry
NASA/GSFC
4 of 37

of automated tools increased, there were significant increases in
3 of the 4 quality measures used in this study:

1. Productivity increased as tool usage increased

2, Maintainability (effort to change/effort to repair)
improved as the number and quality of tools increased.

3. Reliability did not seem to be significantly impacted in
this one particular study.

2.3.2 Computer Environment

Although all of the experimenters felt that there would be
significant increases in all quality measures as the overall
quality of computer support increased, none of the measures
prcved to be significant for this one particular study. It could
not be shown that an improved computer support environment (at
leastas far as the way the SEL described support environment)
directly, favorably impacted the four quality measures used by
the SEL.

This particular study is still undergoing further analysis.
2.3.3 Terminal Usage

The most perplexing result of this experiment study was the
one in which the SEL attempted to assess the impact that
increased number of terminals would have on the four measures
described,

AlTthough the experimenters expected to observe an increase in
both productivity and software reliability as the number of
terminals made available increased, the study found just the
opposite. Both productivity and reliability of software
decreased as the ratio of terminals available increased. There
was no significance in the results for maintainability (effort tc
change/effort for repair).

Numerous suggestions have been put forth in attempting to explain
this phenomena. Some felt that the increased terminal usage
possibly was not properly accompanied with interactive support
tools in the particular environment.

Another idea was that the increased terminal availebility without
proper training for the programmers led to a less disciplined
approach by the programmers.

F. McGarry
NASA/GSFC
5 of 37

There are several other possible explanations of the results and
for that reason, this particular study has been continuing and
will be attempting to more thoroughly analyze this data as well
as the additional projects that have been completed in this
environment,

3.0 Software Testing

A second general set of studies that has been conducted over the

past several years within the SEL has been directed toward gaining
insight into approaches to testing software. Since this phase of

the development 1ife cycle had previously been determined teo

consume at least 30 percent of the development resources

(Reference 5), it was deemed as a critically important discipline

to study. Two major experiments were conducted during 1984 and

1985 in an attempt to:

1. Determine the overall coverage of software in the
typical testing scenario utilized in the flight dynamics
scftware development.

2. Investigate the relative merits of three standard
testing approaches:

o functional testing
o structural testing
o code reading

3.1 Test Coverage¥* (Chart 6 and Reference 6)

The first experiment on testing was designed to determine the
extent to which typical testing techniques within the flight
dynamics environment amply exercised the software that had been
built. This particular environment utilizes functional testing
during both the system test phase as well as the acceptance test
phase.

By instrumenting a major flight dynamics system, then by
executing the series of both system tests and acceptance tests -
experimenters could first determine the coverage attained in the
test phases. Next, the experimenters monitored the operaticnal
execution of this same scftware over a period of months to
determine the extent to which portions of the completed software
were utilized. Finally, the experimenters analyzed uncovered
errors in an attempt to determine if the errors occurred in
portions of the system that had not been exercised during the

*The lead investigator for this work was Jim Ramsey of Univ. of MD

F. McGarry
NASA/GSFC
6 of 37

test phase of development. The software studied was a major
subsystem of a mission planning tool &and consisted of 68 modules
(Fortran subroutines) with 10,000 1ines of code. There were 10
functional tests making up the acceptance test plan for the
subsystem and during the operational phase, the experimenters
monitored 60 operaticnal execution of the software.

3.1.1 Test Coverage Results (Chart 7)

The managers of the flight dynamics development systems noted

that the approach to testing had historically been quite good
(relatively few errors found in operations) and they expected
that the coverage found for this one experiment would be quite
high (few modules would be not executed). The results of the
experiment showed that for the 10 functional tests executed, only
75 percent of the 68 modules were executed and less than 60
percent of the total executable code was covered in the tests.

Additionally, the series of cperational executions showed that a
s1ightly higher percentage of both number of modules and 1ines of
code were executed for this series of 60 executions.

Finally, all of the error reports were reviewed to determine in
which portion of the system the errors had occurred. It was
found that 8 errors had been recorded during the extended
cperational phase of the software, but it was found that none of
the reported errors occurred in software that had not been
executed during the acceptance test phase.

This initial study seemed to indicate that the functional testing
approach was properly leading toc correct portions of the system
being executed and it also was very representative of the
operational usage of the software.

The results of this study indicated that further investigations
intoc the various approaches to testing may be worthwhile to
determine just which approaches were most effective in uncovering
errors in the software itself.

3.2 Software Testing Techniques*(Chart 8 and Reference 7)

Another study was conducted where three programs were seeded with
a number of faults and 32 professional programmers from NASA/GSFC
and from Computer Sciences Corporation (CSC) participated in an
experiment to determine which techniques were effective in
uncovering these faults.

The three testing approaches included:

*The lead investigator for this study was Rick Selby of Univ. of MD

F. McGarry
NASA/GSFC
7 of 37

o Functional Testing
o Structural Testing
o Code Reading

A11 programmers participated in applying each of the three
techniques.

When performing functional tests, the programmers were required
to use the functional requirements along with test results to
isolate faults - they were not to look at the source code itself
until after testing was completed.

Those programmers perfcrming structural testing used the source
code and test results but did not use the functional
requirements.

Code reading was carried out with no executions of the software.

Those performing code reading reviewec the requirements and also
looked at the source code.

3.2.1 Testing Technique Results (Charts 9 and 10)

The, results of this experiment indicated that code reading is the
most effective of the three testing techniques studied. This
technique uncovered an average of 61 percent of all seeded faults
while functional testing uncovered 51 percent and structural
testing uncovered 38 percent.

Before the test, most of the managers in the SEL felt that code
reading would prove to be a very effective testing technique,
although they also felt that it would probably be the most costly
in manhours to apply; but the results of the experiment indicated
that code reading also was the most cost effective technique (3.3
faults per marhour vs 1.8 faults per manhour for structural and
for functional testing). It was also noteworthy that, before the
experiment, less than 1 out of 4 persons participating in the
experiment predicted that code reading would be the most
effective approach.,

An additional observation that was made after the testing results

were compiled was that there seemed to be a difference in the

relative effectiveness of each of the testing approaches as the

size of the software being tested increased. For the smaller

program, code reading was by far the most effective technique,

but for the larger program, functional testing seemed to be quite

effective. This observation may indicate that there should be a
size 1imit on how much code is utilized in a code reading

exercise, Further tests are planned for these studies.

F. McGarry
NASA/GSFC
8 of 37

4.0 Software Measures

Over the past 6 to 8 years, the SEL has defined, studied, and
evaluated numerous measures applicable to software development
and management (References 8, 9, 10), Most of these measures
have focused on one phase of the software 1ife cycle - the code/

unit test phase. In an attempt to define and apply measures in
earlier phases of the 1ife cycle, the SEL has been reviewing
several approaches to qualifying or measuring aspects of the
software during the specifications phase and during the design
phase. Work on the specificaticn phase was reported at the Ninth
Software Engineering Workshopand may be foundinreference 11
and 12, One additional piece of work that has been conducted for
the design phase will be discussed here.

4.1 Software Design Measures* (Charts 11 and 12 Reference
13, 14)

In an attempt to qualify software designs, a study was conducted
to determine if module strength may be utilized as a guideline
for software modularizaticn. Although the definitions of
strength may be well understood, the parameter may not be easy te
determine based soclely on a structure chart or data flow diagram
which may be produced during the design phase of software
development.

For the purposes of this study, strength is defined as the
'singleness of purpose' that a software module inherently
contains, Singleness of purpose is a subjective parameter
assigned at design time by the developer/manager. From a list of
potential functionality that a component may have (e.g. computa-

tional, control, data processing, etc.) the programmer determines
which functicns that module contains., High strength would be
attributed to those components which have but a single function
to perform, medium to 2 and 1ow strength would have three of more
functions to perform.

The study examined 450 Fortran modules (from 4 systems) which
were built by approximately 20 different developers.

Typical SEL data, which includes detailed cost and error data for
all modules was alsoc available for all of the modules. The 450
modules used for this study had a feirly even distribution in
size as well as in design strength. Small modules (104 of the
450) were those with up to 31 executeble statements, medium (148
of 450) were those with up to 64 executable statements and there
were 151 1large modules which had more than 64 executable
statements.

*The lead investigators for this study were D. Card and G. Page of CSC and
F. McGarry of NASA/GSFC

F. McGarry
NASA/GSFC
9 of 37

The objective of the study was to determine if strength of
modules as determined at design time was related to the cost and
reliability of the completed product.

4.2 Results of the Study on Strength (Charts 13, 14, 15)

The results of the study in the SEL 1indicated that module
strength is indeed a reasonable criteria for defining software
modularization. When examining the reliability of the 450
modules, it was found that 50 percent of the high strength
modules had zero defects while for medium strength modules 36
percent had zero defects and low strength modules only 18 percent
of the modules had zero defects. Similar trends were found for
the modules of medium error proneness (up to 3 errors per 1000
lines of code) and for modules having a high error rate (over 3
errors per 1000 1ines of code).

The distribution of the 'buggy' modules (over 3 errors per 1000
Tines of code) was shown to tend more toward low strength as
opposed to high strength. Forty-four percent of the buggy
modules had Tow strength while only 20 percent of the buggy
modules were found to have high strength.

Several additional observations were made while conducting this
particular study. When the characteristics of the individual
programmers were reviewed, it was found that those programmers
who produced high quality software (low error rate and high
productivity) tended to design modules of high strength but they

also did not show a preference for writing modules of any
specific size., Good programmers generated modules of size that
seemed to best suit their design and they did not artificially
constrain themselves to writing small modules.

5.0 General Trends and Observations

Over the past several years, the SEL has conducted numerous
studies and experiments in an attempt to better understand the
impact that various software techniques may have on producing
improved software. In addition to the specific studies conducted
such as the ones briefly discussed in sections 2, 3, and 4, the
SEL has observed general trends in the develocpment and
measurement of software, The observations include such points as
trends in software reuse, trends in utilization of improved
software development technology, and the overall impact of
improved developed techniques in the cost and reliability of
software over a long period of observation time. Some of these
general observations are summarized here.

F. McGarry
NASA/GSFEC
10 of 37

5.1 Trends in Computer Use and Technology Application (Charts
16, 17)

From data that has been collected on nearly 60 projects over the
past 9 years, one trend that has been noted is the tendency to
make heavier and heavier usage of available computer support. 1In
1977 and 1978, computer use averaged approximately 100 runs per
1000 Tines of developed source code while in 1982 and 1983 the
average use increased to nearly 250 runs per 1000 1ines of
source. This trend continues to increase within the flight
dynamics environment being studied.

Simultaneously, it was noted that the use ocf more and more
structured development practices, improved management approaches
and overall higher quality software engineering has continually
increased. Each project has been rated on its application of
over 200 software techniques (see reference 15) in an attempt to
gquantify the overall level of development and management tech-
nology utilized for a project. The aggregate of the total set of
techniques applied results in a rating termed the Software Tech-
nology Index. From an average index of less than 100 in 1976 to
1978, it was found that the cverall development techniques have
increased to an average of cver 140 in the 1980's, This seems to
point to improved training, better discipline, improved access to
tools and possibly better informed management practices.

Although both parameters (computer use and software technology
index) seemed to generally increase over the past 7 or 8 years,
there is no observed correlation between these two factors.,

£.,2 Trends in Software Reuse (Chart 18)

Another general observation that was made from the detailed
development data collected by the SEL, was that the reuse of
software has shown general trends of increase. Typical software
systems in the years 1977 to 1979 averaged about 15 or 20 percent
reused code while in the 1982 to 1984 timeframe the average reuse
has increased to 30 to 35 percent.

Although this reuse is certainly tending in the right direction,
the SEL has not conducted detailed studies to determine what the
driving factors are in improving the percentage of reuse. The
trends are probably indicative of improvements 1in design
technique as well as numerous other factors, but studies have
just recently been initiated in the SEL to determine how the
trend can be improved at a even faster pace.

It has also been observed in the SEL data that there does not

F. McGarry
NASA/GSFC
11 of 37

seem to be a direct relationship between projects that are rated
as having a high software technology index and having a high rate
of software reuse. But this may not be a surprise since one
would expect that high technolocgy usage would lead to follow on
systems being able to pick up or reuse software produced by the
projects wusing disciplined approaches for development and
management.

5.3 Impact of Develcpment Technolcgies (Chart 19)

Probably the most basic goal that the SEL has, is to determine
the impact that specified software development/management
techrniques have on the cost and reljability of software. With
nearly 60 projects having been closely monitored over the past 8
or 9 years,the SEL attempted to Took at general trends inthe

relifability and cost of these projects as measured against the

software technology index computed for each of these projects.
The 200 parameters factored into this index represent everything
from structured techniques to disciplined management approaches

to configuration control procedures. It is one attempt to
characterize each of the projects with a single value.

This technology index correlates very well(r = .82)with
relijability of software in the SEL. Those projects with a higher
rating of good development practices were the projects with the
Tower fault rates of the product.

Unfortunately, the impact of this technology 1index on
productivity is quite unclear. The first general observation
that hes been made is that there is not a clear favorable impact
on development cost (cost per 1ine of code) with projects with
higher values of this technology index. Studies are continuing
in an attempt tc more objectively compute this technology rating
so that a more conclusive statement can be made. Some
researchers also have suggested that it is not to be unexpected
that the specific develcpment cost may not decrease but since
the reliability has improved and the overall software structure
has improved, the maintenance activity will be the beneficiary of
the overall ccst savings, not the development cost.

5.4 Can Software Technology be Measured? (Chart 20 and Reference
3)

Another major question that software engineers address is whether
or not sofivare technology can be measured at all., By utilizing
reliability as one major aspect of software quality, the SEL
attempted to determine to what extent software development/
management practices could be measured.

F. McGarry
NASA/GSFC
12 of 37

There are three levels of development practices which the SEL has
hoped and attempted to measure. First, there are individual
specific techniques such as the use of structured code or chief
programmer team or the use of PDL in design, etc.

Second, there is the usage of a software methodology which is a
combination of several methods into a single disciplined
approach., This could be the set of methods known as structured
techniques which reflect the use of 6 or 8 individual practices
such as top down development, structured cocde, code reading and
usage of Unit Development Folders (UDF).

Finally, the attempt has been made to measure the impact of the
total technology index which encompasses &1l disciplined
management/development practices. This signifies the level to
which the project has attempted to apply recommended software
development techniques.,

The results of this study indicated:

1. An individual technique cannot be effectively measured in
a production environment such as the one in which the SEL is
conducting studies. (r = .37 is a typical value found in
correlating PDL usage and reliability).

2. Disciplined methodologies (combining techniques into a
single disciplined approach) can be measured (r = .65 for one
particular study) and the approaches called Modern Programming
Practices (6 techniques) has a significant, measurable, favorable
impact on software reliability.

3. Total Software Technology can be measured (r = ,82 for
this one study) and higher levels of applied technology have a
marked favorable impact on the reliability of software.

The trends and observations noted here are based on approximately
8 years of data collection and experimentation within the SEL.
Approximately 55 projects have been studied and the research is
continuing and will continue in the future.

Many of the results are inclusive, but with each experience and
study, greater insight is provided into the overall
characteristics of the software development process.

F. McGarry
NASA/GSFC
13 of 37

REFERENCES

1. Software Engineering Laboratory, SEL 81-104, The Software

Engineering Laboratory, D. N. Card, F. E. McGarry, G. Page, et.
al, February 1982,

2, SEL, 81-101, Guide to Data Collection, V. E. Church, D. N.
Card, F. E. McGarry, et. al, August 1982,

3. SEL, 86-002, Measuring and Evaluating Sofiware Technology,
D. N. Card, F. E. McGarry, J. Valett, to be published

4, McGarry,F.; Valett, J.; and Hal1, D., 'Measuring the Impact

of Computer Resource Quality on the Software Development Process
and Product's Proceedings of the Hawaiian International
Conference on Systems Sciences, January 1985

5. McGarry, F., 'What Have We Learned in 6 Years', Proceedings
of the Seventh Annual Software Engineering Workshop, December
1982

6. Ramsey, J., and V. R, Basi11i, 'Apalyzing the JTest Process
Using Siruciural Coverage'> Proceedings of the Eighth
International Conference on Software Engineering, August 1985

7. SEL 85-0001, Comparison of Sofiware VYerification Jechniques.
D. Card,R. Selby, F. McGarry, et. al, April 1985

8. SEL, 82-004, Collected Software Engineering Papers: Yolume 1,
July 1982

9, SEL 83-003, Collected Software Engineering Papers: Volume 11»
November 1983

10. SEL 85-003, Collected Sofiware Enpgineering Papers: VYolume
111, November 1985

11. SEL 84-003, Invesiigation of Specification Measures for ihe
Software Engineering Laboratory, W. Agresti, V., Church,
F. McGarry, December 1984

12.Agresti, W.; 'Ap Approach 1o Developing Specification
Megasures; Proceedings from the Ninth Annual Software
Engineering Workshop, November 1984

13. Card, D.; Page, G; McGarry, F.; 'Criteria for Sofiware
Modularization, Proceedings of the Eighth International
Conference on Software Engineering, August 1985

F. McGarry
NASA/GSFC
14 of 37

14, Agresti, W.; Card, D.; Church, V.; 'Status Repori on
Specification and Design Metirics Studies', CSC, December 1985

15. SEL 82-001, 'Evaluatiopn of Management Measures of Sofiware
Development', D, Card, G. Page, F. McGarry, September 1982

F. McGarry
NASA/GSFC
15 of 37

THE VIEWGRAPH MATERIALS
for the

F. McGARRY PRESENTATION FOLLOW

F. McGarry
NASA/GSFC
16 of 37

0 L1Y¥YHO

#0'€550V98

doys yJop Buniesuibug alem}jos |enuuy yjusa g
G861 ‘v JequadaQ

AHO1vHOAaV1 ONIHIINIONI IHVML10S
dH1 NI
SIN3INWIHIdX3 ANV S3IANLS

F. McGarry
NASA/GSFC

17 of 37

L LdVHD

G8 8 €8 c8 18 08 6l 8L YA
T T T T T T I T
Zm___wnﬂw___um S|OpO 99.N0SaY

suonenbg diysuoneay suonjenb3 diysuoljejay

SeINSEoN

sonsualorIRY) abuey) pue J0u3 soisuajoeIRY) dUlaseg

Sainseap
ubisag

sainseap Alxe|dwo) 91eMm}j0S

asnay
8/EM1J0S

spoyiapy luawdojdaaag painmonans

sayorosddy bunse

SjuowuonAuUg
Bunwwesboid

SUsWIO HAUT
Burwe 6014 sabenbue ubisag pue uonesyioadsg

5100} Juswebeuep $|00} uOlIBlUBWND0Q PUE uol Blusws|dw)

INITINIL HOHVYIS3Y 13S

£1°€G60v98

S|9pPOW

sajljoid pue
sainseap

SPOUIsiN
juawdo|anag

SJUSWUOIIAUT
pue S|00}

F. McGarry
NASA/GSFC

18 of 37

¢ LYVHI

L0'ESS0VI8
(si0443 neday 0} swi]) Jeday 0} 140443 e

(esem}jog abueyn o3 awi]) abuey) 0} 11043 e
(DO /s10113) Ajiqel|ay e
(yluo-ueiN /D0T) AlAnONpPoOId e

© NO

Jawweiboid /sjeuiwsa] J0 Joaqunp JO 1998}43 '€

(yoreg "SA aAl}oBIBIY|
‘awi] punoJeusn] ‘69) 1ioddng Jaindwon jjesaAQ Jo 10843 ‘2

(s1o01pny ‘siolp3 ‘spiy ubisaq ‘6a) s|00] 81eM}JOS JO 109443 |

INIJNJOTIAIA 3HVML40S NO
INIJWNOHIANT 40 S103443 3IHL ONIHNSVYIN

F. McGarry
NASA/GSFC
19 of 37

€ LdvH)

S9INSBAN
pue sBujjey ueemjag suolj a0l 10j paujwexy e

juswiuoiaug o Ajjenp Jo uoledipuj
Buiniy ‘sielaweled snolieA uo pajey sjoaloid e

901M 9€1 01 DO | | woi4 saitep 8zig 108/oid e

sjuswuoiAaug bulhiep
ut adA| |elauar) sweg o s}oaloid v e

IN3INWIH3dXd

60'€G50v98

F. McGarry
NASA/GSEC

20 of 37

aAljoRIBY| IV yaieg liv
Spuoda9g 6> Spuoddg 02<
SINOH 2> Aeq L <
ybiy A1ep moT AJap
ybiH Ao Mo A1ap
8 4
N\F w\F
Buney ybiH Buney mo

¥ LYVHD

8AIlOBIBIU| "SA yoleg
awl] asuodsay
awij punoJeusn]

Arenp j00)
abesn |00

S|00] }O JaqunN

lawwelboud /sjeuiwsa |

SNOILVIHVA LNIJWNOHIANI

0L°'ESS0V98

JUBWUOJIAUT
Jlaindwon

s|00]

F. McGarry
NASA/GSFC

21 of 37

G LdvHO

F. McGarry
NASA/GSFC

22 of 37

L0'EGS0VI8

uoIB|81100) ON = 0

uoe|elion) aAjebeN = -

awi| 10 s10413 Jamo] saydwy siy) - nedey o 11043
pue ‘abueyn o] 1104)3 ‘Aujiqelay 10} - UOHB|8II0D BAINISOd = +

Jawweuibouid 19d

0 0)) s|eulw.a |
JUBWIUOJIAUT
0 0 0 0 1eyndwon
| jioddng
+ + 0 + 1001
neday | ebueyp | Aunqgenay | Auanonpouid
O} 110443 | O1 104}4

S11NS3Y

9 1Y¥YHD

21'€550v98
sase) asn |euonesad 09 e
s1s9] aoueldeddy jeuoloung ol e
O01S X0t o
S3INPON 89 @
welboig soweuhAq wyby4 | e
Apmis 10} BieQ

puno4 sJ0JJ3 JO sejljoid -
paInoax3 sa|NPoW pue 8poY % -
abesn jeuonesadO YIM 811J01d 1591 8oueidadoy asedwo) e

painoax3 SaINPOW JO % -
pajnoex3 8pon) jJo % -
(Bunse | aouejdesdy) yuswuosnaug
auQ ui Buyisa] jeuoloung Jo solISII9IORIBYD BUILIBIaQ @
aAn2alqo

3OVHIAOD 1S3l

F. McGarry
NASA/GSFC

23 of 37

L LYYH)

20'€650v98

yoeoiddy pooxr) sj Buiysa] |euonound - juswuoliAug siyj 104 e
abesn [euonjesadQ Jo aAlejuasaiday A1ap 819 M SISaL aoue]daooy e

(sa|NPOW paisalun ul J0N) ouruajuiey Buung palsAodun sined g e

%L2 %Y (1se1 A1oA3) painoax3 soINPON %
%08 %GL (lero1) p@inoax3 SINPON %
%01 %81 (1se1 A18A3) paindex3 apod %
%G9 %9G (leloL) paindex3 apoYd %

asn |euonesadp 1s9] aoueidaddy

S17NS3d 3DVH3IAOD 1S3l

F. McGarry
NASA/GSFC
24 of 37

8 LdvHI
SOA SOA ON
SOA Buinse | SOA
vy
Bunse) SOA SOA
=244
Bunse) Bunse] Buipeey
jeanyonns jeuoijoung apoon

:sanbiuyda | UoiBOIJIBA
08L/LL XVA ‘LYEY NEI “mczmg aulluQ Jo} s1andwod
sjine4 Yylip pepeeg :sweiboud uenio4

I0lUN[‘9)BIPSWIdlU| ‘POOUBAPY :S|aA8T asiiiadx]

welboid aynoeax3y

apo)
99IN0S MBIA

uonesyvadg
welboid MaIA

M MO N M

(DSH pue D4SH) siawweibouid |euoissajoid 2€

S3ANDINHO31 ONI1LS3l
J4VML140S 40 S3IdNis

L1'€SS0VI8

F. McGarry
NASA/GSFC

25 of 37

6 LYVHD

91'€650v98

sjo08lgng Jolunp 10 8jeIpaWISIU} UBY L

je119g Bunse| jeimonig pue buipesy apo) pauiiojiad s108/gng pedueApY

anbiuyoe | 8A108})3 ISON 8y} ag

0] Buipeay apon paraleg sioaiqns 8yl 40 %ee AluQ Juswiiedx3 ay) oy Jold

14043 JO INOH 18d P81o8laQ Siined ay) pue pajosieq siined Jo

loquinN |B10] 8y} jo swia] ul enbiuyds) 1seg ayl eg o) peaoid Buipeey epod
Bbunsay Bunsaj Buipeey | Bunse} Bunse) Buipeey

[einjoniis jeuonoung epo) [eJnionns |euonoung 8pon
ee 19
10443 JO INOH Jod pajosjaQ siined Jo %

pejoe1eq sined Jo JequinN

S11NS3H ONILS3I1 FHVMLH40S

F. McGarry
NASA/GSFC
26 of 37

0L LyVvHI

0215 0} Buipiodoy pesepsO swesbo.id “.m.oz ¥1'€550v98
swesboid 1064e7 104 9A1109})3 a0 aq Aey Bunsa] jeuonoung
wesbouid
€ I (4
| | |
-~ 0¢
- OV
- 09
jeinionns m | // o
jeuonound v / -{ 08
Buipeay apoD @ ~
Aoy “e 7
00l

puno4 sjine4 jo jusdied

3Z1S NVHOO0Hd
'SA S3NOINHO3L ONILS3L

F. McGarry
NASA/GSFC

27 of 37

LL LY¥VHI

S0'eSS0VvI8

soawweiboid Aq paulwialaqg - 8|NPOWN Aq pawiojied suolound jo (ssequinpN pue) sedA] ,

awl] ubisaqg ie
siswweiboid Ag suonduosaq ubisaq pajieiag e

SS|NPOW |IY UO Ble(10113 pue }s0) pajieiag e
siadojoraq 1usisyig 02 Alerewnxoiddy e

S9|INPOW ue}lOo4 QG ©
Apnis 1o} ele(Q

uoljezue|NnpPop 9Jem}jos
10} BlI91ID Sk 8zIS pue ,yibuailg ajenjeA] e

aAo8lqo
S3IHNSVIN NDISIA IHYML40S

F. McGarry
NASA/GSFC

28 of 37

S1'€550v98

21S

¢l 1YYH)
ce0 8ION 10 S9 LG abieq
L€0 v9 01 2¢ 8Pl wnipay
L€0 LE O | yG1 llrews
juswaiels
a|qeINoexy SjuewWsa)els m:wuﬁm_.._‘ ozIS
lad suoisigoaqg a|geinoex3y 1O JOQUINN a|NpPON
ueap
uonnquisiq @
2€'0 8 /81 ybiH
2€0 09 9/l wnipay
620 Ll 06 MO
juswajels
ajqeInoaxy sjuswaajels SOINPON Emcm:m
lad suois198q 81qeinoex3 ueliiog 3|INPON
UBON uespy }O JequinN
W
uonnqguisiqg yibuans

S3IHNSVIW NODISIA IHVMLH0S

F. McGarry
NASA/GSFC
29 of 37

€L LdVHI
yibuang yibuans yibuans
MOT wnipai UbiH

%0¢

61°'€650V98

wnipa
%82
wnipap
%06
0197

H1HN3HLS 3TNAON 40
S3ISSV10 HO4 3LvH 11NV

F. McGarry
NASA/GSFC

30 of 37

Pl LUVHI
02'€SS0v9s

Bundnon 9zIS yibuans

uowwo) paxiN Jojeweled abieq7 wnpey jlews ybiH wnipey MO
%0¢
%0 %62 %L ‘96z
%9¢€

%0V g

SSB|D Ul S8[NPON 8uoid }ine4 Jo juadlad

SOILSIHILOVHVHOD NDIS3d

F. McGarry
NASA/GSFC

31 of 37

c-2

Sl LdVYHI

92IS 8|Npojy 0} paje|ay Aj30auig JON S| 8leY Ined e

SO9|NPON jlews uey] (juswalels ajgeindaxy
~1ad) ss871s0) sa|npoy abie ‘|jesoAQ e

sa|npoN yibuaans-mo ueyy
$S97 1S0D pue ajey jjne4{ JamoT Yy
aAeH sa|npoN Yyi1busaiis-ybiH ‘jle1enp e
9zIS 9INPO do1108dg Auy
10} 90ualajaid ON moys stawwelboid poor) e
sa|npo yibuasng
-ybiH a114M 01 pua] siawwelbold poor) e

AHVIANNNS SIHNSVYIWN NOISIA

80'€550v98

F. McGarry
NASA/GSFC

32 of 37

9L LYvHI

1els 108(oid Jo JeeA

6. 8. Ll 9.
08 ! _ _ _ 08

00L|- -1 02t
0cL -1 091
ovif V4 -1 002

xepu| ABojouyoe| v

asn 48indwon ¢

Koy
091 ove
xepu| ABojouydse | seul puesnoy] Jéd suny

SAN3HL JNIL

ADO0TONHO3L ANV 3SN H3LNdNOD

81'£550v98

F. McGarry
NASA/GSFC

33 of 37

L1 LYvHI

esn ABojouyse] pue osf 101ndwo) uesmieg uUoIB|81I0D SNOIAGO ON L2'6550vo8

xepuj Abojouyoe |

ovli oclt 001 08 09
] I I T |
® ° ° ®
°
¢ - ozt
®
°
°
- 091
®
- 002
®
- 0ve
L Y
08¢e

seulq puesnoyy Jed suny

3SN H31NdNOD
NO ADOTONHO31 40 103443

F. McGarry
NASA/GSFC

34 of 37

(10N 10) pesney 81em}os AUm pueisiepun LuUoQ M Ajuesin) e
$1404)3 pa10a4iq Inoylm Buiseasou) ueag seH asnay aiem}jos e
ABojouyoa |, e se |eluajod uedyiubig seH asnay aiemljos e

xapu| ABojouyoa] |eio})

ovi 0ct 00!} 08 09

[} | 1 1 I
] ® -

L

e ® 7
@ ﬂ ‘
® ‘o -
. —f
esney 8Jem}jos jO uonowo.d -

0¢

oy

09

08

00t

epoo pesney %

(SOILSIHILOVHVYHD HVYTINIS
40 S1923rodd St NO a3svg)
3SN34 IHVML40S NI SANIHL

81 1dvHI

v861

awi] JaaQ s1oafoid

&)
£
SO~
P
Mmu,m
22'€550v98 w2
2261

0S

apon pasnay %

2
6L LYYH) B
Q95
O <.
= ASn)
wZ &R
L1'€SS0V98
siojoe4 18410 Auep 00} 0} 8AnIsues sj AJiAI1ONPOId e
pejoeduy Ajqeioae eg ued Ajiqeley e
xapuj ABojouyosa] [er101 xapuj ABojouyoa} jeio]
ovi oct 001! 08 09 ovi oct 00l 08 09
o | r & | | | | |] |
® ® ® 280-=
° Uoe o - zo00
o0 | g¢ Y000
®
o -1 0% 8000
PY - S 8000
0'S] 0100
Alaionpoud ajey ine4

SAIDOTONHOIL
ININdO13A3A 40 S103443

G2 LYuYHD

£€2'eSS0v98
Amenp 10edw Ajqeloae4 saibojopoyio peieibalul e
einseep O 1iNdy4ig eiy senbiuydse) |enpialpu; e
si019e4 1y (2 (g) s1010e4 peiejoy (q 101084 8uQ (e
xepu| ABojouyde} (ejo} xepu| dd Xepuy 8p0) PeMINIS
ori o2t 001] 09 ’ £ 2 i
T T T 1 T z00'0 T T T T
28°0-=4 L£0- 4
2000 2000
¥00°0
$00°0 ¥00 0
9000
9000 9000
8000 8000 800°0
0100 0100 0100
ejey ney o)y 1IN 4 ajey jiney

ALIEGVvIT3d 3HVM1L40S
NO 3SN ADOTONHO31 40 103444

F. McGarry
NASA/GSFC

37 of 37

N86-30360

PANEL #2
TOOLS FOR SOFTWARE MANAGEMENT

D. Reifer, Reifer Consultants Inc.

J. Valett, NASA/GSFC

J. Knight, University of Virginia

G. Wenneson, Informatics General Corporation

SOF TWARE MANAGEMENT TOOLS: LESSONS LEARNED FROM USE

Donald J. Reifer, President
Reifer Consultants, Inc.
25550 Hawthorne Blvd.
Torrance, California 90505

Abstract: Over the last five years, considerable progress has been made in
the area of software resource estimation, management and control. Numerous
tools have been developed and been put into use that allow managers to
better plan, schedule and control the allocation of the time, workforce and
material needed to develop their software products for NASA applications.
Currently, over 300 commercially available software project management tools
exist including about 180 project s?heduling and control packages for an IBM
personal computer-based workstation . In addition, numerous tools exist for
estimating software costs, measuring software progress through earned value
concepts which rely on reporting milestone completions, maintaining
configuration integrity over the software product data bases and measuring
software quality. The 1literature is full of promises and details when it
comes to these tools and it becomes confusing when you try to sort out what
they really can and can’t do when you read the sales fiction. In addition,
much of the experience associated with transitioning these tools onto
operational projects where managers are trying to use such aids to reduce
the time it takes them to plan and control the delivery of their compiex
software products has not been recorded or shared.

The purpose of this presentation is to remedy this situation by
discussing the author’s recent experiences in inserting software project
planning tools like those mentioned above onto more than 100 projects
producing mission critical software. The author will briefly summarize the
problems the software project manager faces and then will survey the methods
and tools that he has at his disposal to handle them. He will then discuss
experiences his firm and users of the RCI developed Project Manager’s
Workstation (PMW) and the SoftCost-R cost estimating package have had over
the last three years. Finally, he will report the results of a survey
conducted by his firm which looked at what could be done in the future to
overcome the problems experienced and build a set of usable tools that would
really be useful to and used by managers of software projects.

THE PROJECT MANAGER’S WORKSTATION

The Project Manager’s Workstation (PMW) was a prototype system that was
built 3 years ago for a military client to research the following issues:

. What tools does a software manager really need and what tools will
he really use on the job?

2. What are the criteria which govern the acceptability of management
tools by managers, not computer scientists?

3. Can management data be bridged between commercial tools developed
by different manufacturers and resident on different machines?

! P. Kane, J. Bruscino, T. Pillsbury, D. Reifer and B. Strahan, Project

Management Tool Survey Report, Note RCI-TN-145, 29 March 1985.

D. Reifer
Reifer Consultants
1 of 22

The PMW is a collection of management tools that runs on a dual floppy
IBM personal computer with 512 KB. 1t has the following capabilities:
resource planning, scheduling and control via a Work Breakdown Structure
(WBS); Gantt and PERT chart (tabular and graphical) preparation and drawing;
user-oriented report generation for cost-to-completes, schedule-to-completes
and earned value determination; local bridges to packages like 1-2-3 and
dBase on the personal computer and global bridges to packages 1like PAC-11
and VUE on meinframes; and a personal time manager which allows relational
development and searches of action item lists, calendars, distribution lists
and telephone lists.

The PMW was designed as a rapid prototype with both wusability and
technical capability in mind. We hoped to learn from it as we put it into
prototype use within organizations who were willing to try to employ it on
their projects. It has been distributed to over 200 people over the last 3
years. Each user was required to attend a hands-on course on the system
where he/she was taught how to use the package for managing a software
project. A generic WBS was developed and inserted into the package to guide
its users in consistent work task identification and cost data collection.

Recently, RCI surveyed the users of the package to get their feedback
and to understand what their real requirements were when it came to project
management tools. It was interesting to learn the following:

° The man/machine interface design makes or breaks the system. The
user interface must be easy to learn and easy to use. It should
be picture-oriented, function key driven and menu-based. Tool
designers shouldn’t assume managers know how to type, use a
computer and/or will read manuals. They won’t based upon our
experience. To combat this, the package must have built-in "HELP"
and safeguards against inappropriate usage.

o Most managers object to project management systems because they
are required to do a lot of data input. Managers do not have the
time, desire or skill to do it and often, don’t do it right.
Subordinates don’t have the knowledge or the experience to do it
correctly. Therefore, the system must support both working
together to relieve the manager of the drudgery of getting
the first set of workable plans into the system. To combat this,
many tool designers should looking at "games" and should try to
adapt their concepts to making data inputting "fun”.

® Most vendors do not mechanize all the features and functions they
put in their manuals. This makes it extremely difficult to
interface packages together into an integrated system. File
interchange performance is the critical issue because management
users will not tolerate lengthy delays in getting responses to
their questions. In the development of the PMW, we had to drop
about half of the candidate packages from consideration and build
our own modules to replace them as a result. Tool designers should
therefore only rely on a core set of capabilities when they plan
to use commercial packages.

® Global bridging or linking a micro-based tool to a mainframe-based
system is much more difficult than first expected. Vendors do not

D. Reifer
Reifer Consultants
2 of 22

like to give you the file interchange formats and reverse
engineering is the only alternate solution to getting this needed
information. As a conseguence, it took us 3 times more effort
than originally planned to provide this capability. Tool designers
should not count on the vendors of packages to make their jobs
easy. Instead, they should adopt a standard file format like DIF
and consider only packages that implement it.

® According to our users the most useful tools were work planning
oriented, the most used tools were time management oriented and
the most wanted tools were "what-if" oriented. This is not
surprising and should be factored into future system designs.

° Because the state-of-the-art is moving towards networking,
managers wanted to evolve their tools so that they could
interrelate what their people were doing at different sites via
their management tools. According to their wish lists, they wanted
to do things like schedule a meeting on their people’s calendar
electronically and to preview deliverables in their work units
libraries via remote inquiry privileges.

SOFTCOST-R

In another effort, RCI developed a cost esti@ating package based upon
the work of Dr. Robert Tausworthe called SoftCost-R™. In essence, RCI spent
six person years of effort to productize the experimental work done for the
Jet Propulsion Laboratory. SoftCost-R is hosted on an IBM personal computer
and versions exist for all of its models including the PC/XT and PC/AT. The
primary feature RCI implemented was usability. Learning from our PMW
experiences, we built a user-friendly screen editor to make the package easy
to learn and easy to use. Since we introduced our product earlier this
year, over 20 organizations have acquired it and are using it to predict
their costs. Most of these organizations work on small to medium—sized
projects developing software for embedded applications. The capabilities of
SoftCost-R are similar to other parametric and statistical cost models on
the market today 1ike COCOMO, PRICE/S and SLIM. The key difference has to
do with the ease with which the management user can employ the model to
answer the "what if" questions he so desperately needs to answer.

Again, RCl surveyed its users and members of its development team to
determine what lessons couid be derived from its experiences to-date. This
was very valuable to us because we were in the midst of planning
enhancements to our current product and wanted to factor these lessons into
our future releases. It was interesting to learn:

® The number one issue on the minds of management when it comes to
costing is sizing. How can one determine in advance how big the
program will be when you don’t have the foggiest idea of what the
system architecture will be was one of the comments heard during
one of our interviews. While some research in this area is
underway, managers will be reluctant to accept the results of cost
models unless some of it pans out.

2 Robert C. Tausworthe, Deep Space Network Software Cost Estimation Model,

JPL Publication 81-7, 15 April 1981.

D. Reifer
Reifer Consultants
3 of 22

° Most of our users employed at least two cost models to cross check
each’s results. The most popular model wa§ COCOMO and most of our
users employed it manually from the book. The reason for this
popularity seemed to be its availability. Unfortunately, many
users in our survey did not seem to fully understand the model’s
scope or limitations and were misusing it on the job.

® Calibrating a cost model to the organization using it is the hard
part. Most organizations using our model did not have cost data
available to either calibrate the model or validate its accuracy.
Even if they had data, it was hard to make any sense out of it.
Less than 5% of our users collected cost data as a norm and few
had a framework in place for cost estimating. While cost models.
1ike SoftCost-R forced these organizations to gather data, most of
it was not statistically homogeneous. Models must therefore be
architected so that their calibration points and sensitivities are
known and easily altered. In addition, the model must come with a
known calibration data base in order for its users to have enough
confidence in the model to believe its results.

e Non-management user’s put too much reliance on models. Because a
model gives them an answer, many believe it is right and don’t do
any more homework.

° Management user’s tend to be more skeptical and don’t believe the
results ‘of models even if they are perfectiy calibrated to their
projects and their environments (which they are not). Often, this
is because managers really don’t want to know the truth - the
software is going to cost more than they expected and they don‘t
have sufficient budget allocated for it.

° Many simple and mundane packaging concepts can make a model
acceptable to a management user who will sacrifice capability to
get something he can get answers from. Good user engineering goes
a long way with managers who neither have the time nor the desire
to become professional parameticians.

CONCLUSIONS

While the results reported seem logically and self-apparent, few seem
to have paid attention to them in the past. Considerable attention needs to
be paid to the packaging of tools when they are exported to production
‘organizations from tool developers. The author sincerely hopes that this
presentation will stimulate renewed emphasis on this important topic.
Afterall, the results are based upon a survey of over 200 management users
and are not only the author’s opinion.

3 Barry W. Boehm, Software Engineering Economics, Prentice-Hall, 1981.

D. Reifer
Reifer Consultants
4 of 22

THE VIEWGRAPH MATERIALS
for the
. D. REIFER PRESENTATION FOLLOW

/

D. Reifer
Reifer Consultants
5 0f 22

S0S06 BIUIOIED '9URLIOL/BOZ BNNS ‘DIEABINOG BUIOYIMEH 0GSSZ

DU| ‘SUBYNSUO") 19§ISY

dOHSMHOM HNIH3IANIDNI IHVM1L40S O4SO/VSVN
TVANNY U310l 3IHL 1V NOILVIN3IS3IHd

G861 H3AW3D03A ¥

4SSN NOYH4d dINdV3l
SNOSS31 :S700L1L LNIWIODVNVN IHVMLH0S

¢6T-N1-134

Reifer Consultants

D. Reifer
6 of 22

Reifer Consultants

D. Reifer
7 of 22

3AQVW 3AVH 3IM SINVISIW 3IHL TQIOAV NOA d4713H
ANV S1H¥0443 dNOA 3ON3NTANI ATIN43d0H O] |

3SN HONOYHL AVM QiVH 3JHL
- @3INYV3IT 3JAVH 3IM SNOSS3T IHL ILVIINNWWOI O] @

JOVAIVY ONILVWILST Y-1S0)140S ©
(Md) on_._..q._.wv_moz S, 43OVNVY 123rodd o
ST700L INIWIOVNVW

JYYML40S N0 HLIM S3IONIIY3AX3I dNO SSNOSIA O] L

ONId31d8 40 3IS0ddnd

Reifer Consultants

D. Reifer
8 of 22

— S$S3008d 3AILVYILNI NV Iw:omx._.|—

(ONILO3Y¥IQ B

ONITT04LNO)
Wv3] 3HL 40 ONI¥NSYIY

S1¥0443 3IH| 9 ONILVY9ILN]

ONTLVAILOW
\ INILVIINNWWO)

INI44VLS
NIHL ANV - WV3I] 3H| ~esE=— ONIZINVIYQ A9 SNI93g
ONINNY

SS3I00Hd LNINWIAODVNVIN JHL

SNOILONND 3SIHL 1d0ddNS OL LSIX3 SIOVIIVA (Q0¢ ¥3AQ

ONTL1H0d3Y
SYIOVNVYY IWIL ONILVY

ONI1Y¥0d3Y B ONIMNVY
ONITINA3IHIS ONILSVIO3404
ONILVWILST JATLVYLSINIWAY

IN3IWIOVNVHY INIWIOVUNVY
INIT TYNOILONNS

SW3ILSAS ALIAILONQ@OYd 3ID0I44(Q

INIWIOVUNV| AdVHEIT] [
IN3IWIOVNVYY TTVIONVNIS o
IN3IWIOVNYY NOILVHNOIANO) o
SW3ILSAS NOILVWYOINI LIN3IWIOVNVY

S$7001 ,dI-1VHM, ANV 1Ly0ddNS NOISIJ3[

_rzm:m>m S, ANVAWO) 3H| _

ONINOVY]
ONITNA3HIS
ONTLVWILST

INTIVA T3INYVI

INIWIOVNVY
133royd

DA

D. Reifer

Reifer Consultants

9 of 22

l
STO001L LNIWIODVNVIN AHVSS3OaN

JUNLINYLS NMOMIVIYE MIOM
3137dW00-0.1-37TNA3HIS
S3T1408d 32UN0SIY
SONIJ3I49 8 ONILIIW AT)

H1Vd VIILIY)
3137dW0J-0L-150)
%00€ SS3YAqy
1S17 W3LI NOILOY

TONIANTONI S1¥0d3Y¥ 40 ALIIYVA V S3IINA0Yd

JOV4YILNI FHL AJITAWIS OL SA3IM NOILIONNA S3ISN ANV dILINIIHYO0-NIIHIS S|

S31117719VdVD 9NILHO0d3¥ CQ3AOYdWI

ANV SNOILONNS INIWIOVNYW IWIL “JYJd TTVOIHAVYD “IOVIYILINI
ANTHOVW/YIOYNYW d3IONVAQY NV ONILVHO4Y¥OONI Ad INTVA SAAy

ONITNAIHIS ANV ONIYNLONYLS HHOM

¥04 SNITINN SLI SY ,YIINAIHIS LO3Aro¥d, dITIVD 39vXOVd vV s3s(

S3INIHOVW N3I3IML3d J394QIy¥gd 39 4TN0D VLIV MOH ANV T33N SYIOVNVW
S700L LVHM HLIM Q31VIJOSSV S3INSSI 3IHL HOYVIS3Y OL d3d013A3(Q

JOVNOVd LNIWIOVNVW LI3M0¥d QILVHOIINI “TIVINIWIHILAX3 NV SI Mid —

M3IIAHIAO NV -MINd

Reifer Consultants
10 of 22

D. Reifer

Reifer Consultants

D. Reifer
11 of 22

Iviyoing e
JONVLSISSY 3aoy @
(d3d073A3A DY)
SANYWWO) @ : —
d13H
1SI17 W3LlI NOILODY @ }
L1SI7 9NI431¥9/9N1L133 °
SINIWLINIOddY 40 M<ozu4<z ° (03401330 10¥) | Y
) INIWIOUNYW IWI]
»oog ss3a¥aay e]
a3do3A3a 12Y)
AOV4YIINT ,¢-2-T. SNLOT @ _ A SITLITILN A||||.F
JOVAYIINI J] JYd @ (Q340713A3a
3137dW03-0L-150) @ (Q3d013A3A 1Y) |o— o— IN)
(NN SL1S0D 123rodd o S1¥0d3Y IA1LNI3X3
SgM @ SLYVHD JINVD @ Mid
LYVHO MYOMLIN @ (034073438 1J4) 1
AYOMLIN
(40LID2S Ag
¥3INQIHIS 123AroYd)
SINIW3TI SgM ¥od L1s0) e 9NI1139and '
SINIW3T3 SEM d¥0d LdvHD [INY9 @ aNY 9NITINQ3IHIS
JUNLONYLS NMOMIVINE NYOM 3ILvI¥) @ ‘NOILINIJ3Q MMOM

S3111718VdVO TTVNOILONNd -MIANd

STVANYW
YI13HL NI SNOILINNL/S3¥NLVIL IHL TV IZINVHOIW ION 0OQ SYOANIA @

Reifer Consultants

D. Reifer
12 of 22

S3WV9 ONISN SdvHy3d 3INOQG dO0r
JHL 139 Ol ¥3IHLIOO0L ONINYOM HLOd LHO0ddNS LSNW 100L 3IHL @
11 0d
0L 3ONIIYIdX3I ¥0 3IOAITMONA IHL JAVH 1,NOQ S3ILVNIQHOENS @
11 00 OL 77IXS ¥0 3¥IS3IA 7IWIL IHL 3AVH L,NOQ SUIOUNVl @
AYIN3 V1Va IVILINI 40 SW37904d IHL ANNOYY AVM ON SI 3J¥3H| @

»d13H, ANV SAyvn93dvs NI-11Ind
JAVH LSNW ANV N¥V3IT OL ASVI 39 LSNW 3IOVIOVd IH] @
STVANYW av3y T1IM dHO0/ANV
¥3LNdWOD Vv 3SN “3dAL OL MOH MONX SHIOVNVW JIWNSSV L,NOQ @

gasvd

~NANIW ANV NIAI¥Q A3X NOILINNA “dILNIIYO-3ANLIId @
ATANI1Y4-43SN 39 LSAW IOVAYILNI INTHOVW/HIOUNVW JH] @

| dIaNJV3I1 SNOSS3IT :MINd

SAN3YL ANV SL1OVd4 40 JFOVINVAQY INVL ATINOHS [I-MAd 3H1L @

Q3ILNIIYO-NYOMLIAN OL ONILVYOIW SI LdV-3IHL-40-3LVIS 3H] @

Reifer Consultants

D. Reifer
13 of 22

@3LIN3I¥0 ,41-1VHM, 3¥V ST7001L Q3ILNVM LSOW 3IH] @
QILNIIYO INIWIOUNVW IWIL IJHV STT00L a3sn LSOW IH] @
JILNIIYO ONINNVId XYOM 3¥V ST00L IN43sSN LSOW 3HL @

ATLINIYIHA410 NNY ST NOILVZINVIOHNO A¥3IA] o
S1Y0d443 394V SIYINDIY WILSAS d3svd

-JWVYANIVW ¥V OL 700L 3sSVE-OdIIW V ONINNIT ¥O ONIOQIyd TvE0T19 @

SNOILS3IND® YI3FHL OL SISNOLS3H

ONILL13ID NI SAVI3IA ILV¥3T0L LON T1IM S¥ISN ISNVI3d

INSSI TVIILIYD 3HL SI IONVWYO4Y3d FONVHOUILINI 3714]
S3OVIIVd ¥3IHLO

0l S39VIIVd FOVAYIINI OL ASVI LI 3INVW LON OQ SYOANIA @

S D T
Il AINHVY3T SNOSS3T ‘MINd

S3SS3I00¥d 9ONILIAI 3ITdWIS A9 TIONVHOD
39 01 SYILIWVYVYd ST3IAOW TV SLIWH3Id ANV QILNITHO-NIFHIS S]

SASVL LIN3IWd0T3A3Id
JYYMLA0S ¥O0d4 JFUNLONYLS NMOMAVIUG MHYOM CQHVANVLS V S3IONA0Ud

123r0dd VvV dN ONINVW SHSVL
0g 1nogvy ¥04 S3LVWILSI 32UN0S3IY¥ ANV IFTNAIHIS SILVHINIY

S3¥NLVYI4 ONILLOTd ANV SISATVYNY ,dI-1VHM, TTNJ¥Y3IMOd SIAIAO¥d

NOILYYNA QNV 140443 Q3S0d0dd ANV ¥0d4 1390Nd NIHLIM
ANV JWIL-NO ONIY3AIT3A ¥0d4 dOLOVd4 IINIAIAINOD S3LNdWO)

SINIWIHINDIY ONI44VLS ANV NOILVING “S3OYNOS3IY
12103¥d OL SYOLOVd4 ALIAILONAOY¥d ANV ONIZIS Q9 1nodvy S3sS()

ANIW NI ADVHNOOV ANV SS3INITIANIIH4-¥3ISN HLIM d3d0713A3Q

M3IINH3IAO NV :H-1S00140S

Reifer Consultants

D. Reifer
14 of 22

S3TNAIHIS MSV]

140d3Y AYVWWNS

JIVYWILST L23ro¥d

L¥0d3Y A¥YWWNS
INTVA LNdNI

S101d ,d]-1VHM,
S1d0d3Y

SISATYNY ,d1-LVHM,

JLVWILST

S32¥N0S3IY IFYVYMLL0S

sinding

asvg vivq
NOI.LY¥EITV)

d3LNdWO) TTYNOSH3d 1 40 WHI

W3ILSAS ONILVY3d(] SO0 SW

d4011d3 1S0)140S

L

NERIE I IR RENED) 13aoy
143d/ 1INV 18043y 1509

SN33YIS d73H
SHOLOV

IV INIWNOY I AN
SYOLIV4 ONI44VLS
SYOLIV4 LNIWIOVNVY
SYOLIVY ALIXITdWO)
NIIYIS ONIZIS

AN3Y ¥ILSWY

SINdN]

Reifer Consultants
15 of 22

D. Reifer

WNVHOVIA MIIAHIAO :H-1S0D140S

W3LSAS 3IHL NO 9NIL139 40 ¥NOH 3INO
NIHLIM 31VWILST 1SYId ¥I3HL JLVYINID OL 374V N3IIE JAVH Sy3IS() o

TOYLNOD AYVYEIT LOIY¥LS d3IANN ,
G3NIVINIVW SI ANV LNIWdIHS OL ¥0Idd d3ILVAITIVA SI Y-1S0JL40S o

Reifer Consultants

D. Reifer
16 of 22

3OVAIVd
3HL HLIM Q3¥3AIT3A ANY TTVANYW S,4¥3SN SLI OLNI Q3LVH93LINI
21831, @37IVD 31dWYX3 NV HLIM Q3¥3AIT73Q ST Y-1S0)1d40S o

ISNSIW 0L QYVH SI ANV SHO3HD LIWIT NI-LTINg SVH Y-1S0JLd40S e

NOILV13UdYIINTI NI
S¥Y3SN LSISSY ANV ADOTONIWY3L 40 NOILINIL3AQ JHL 3ZITTVIO0T
0l N33¥IS LI7dS V NO S3INIT ,d713H, S3ASN Y-1S0)140S 0

SAIN NOILIONNL ANV
NOILVION SUNVIE-IHL-NI-T71d4 9NISN QILNITHO-NNIW SI Y-1S0)L40S L

STIV09 NOIS3A AYYWIdd 3¥V ONINYVIT ANV 3ISN 40 ISV [

1 —

3sSN OL ASVY3 SI H-1S00140S

LINV9 _ 1¥3d

— -

2| [

SNSY3IA

NO1Lvang |
3IN3AI4NO) 3

14044
SNsy3

|

uzmn_mzou_‘

AMYIWWNS
$3TNA3HIS JLIVWILST
WSV] 1231r0¥d

S101d
:mHIH<I3=

SISATTVNY

=L~IH<IZ=

JLYWILST
$30¥N0S3Y
15071408

E

S1¥043Y
INRELED

Reifer Consultants

D. Reifer
17 of 22

MOTd NOILVHINID 1HOd3IH :H-1S00140S

00 - 133M0dd 1S3l
130433
109 19S 129 1814 vy 00F (09E

3

1S130d34<-4D

0ce 082 0vZ 002

* v Ly a T T T

T - s) 2
1
t

+8
]

1
+pi
'

:
+i2
'

9°Le
NOLLVNG
Q3Xi4 v 404
3ON3A1INOD

Reifer Consultants

D. Reifer
18 of 22

I ——.

S107d .dlI LVHM,

-4-1S00140S

SNOILVLIWIT ¥0
3d02S SLI ONIANVLSYIANN LNOHLIM ATIVANVW LI AOTTdW3 Sd3ISN LSOl

ALITIGYTIVAY SLI 40 3SNvd3d QWOJ0D 39 OL SW3I3S T3AOW ¥VINdOd LSOW 3H]

W3IHL 31VI17d34 LSNW ST3AOW ANV JIWVNAQ I¥VY SNOILVZINVOM(Q
3831V ATISYI ANV NMONM 34V S3ITLIAILISNIS
NV SLNIOd NOILVMEITVYD ¥I3FHL OS Q31D3LIHOYVY 39 LSNW ST13A0W

1¥¥d Q¥YH JFHL SI NOILVZINVOYO 3HL OL 773AO0W 3IHL ONILVEEITIV)

LON 3¥3IM ATIVIY 1Nd JATLANYSIA @IW3IS LVHL SIDILOVHd
SS3NISNG NI S3IONVHO Q32404 ST3AOW LSOO 7S3SVYI IWOS N]
NYOMIWVYHd ONITLVIWILSI NV HSIEVLST

NV ViVd LS0D ¥3IHLVYD OL SNOILVZINVIYO (@30d0d4 ST3AOW 1SO)
ONILVWILST 1S0J ¥04 3IOV1d NI MYOMIWVYY CQIHSIIIVLSI NV

avH M3d4 ONV WYON V SV Vivad 1S0D d3LJ337700 SNOILVZINVOYO M3
11 40 1N0 3ISNIS 3INVW OL QYVH SVYM LI “viva avH A3HL d1I N3A3J
AJVHNIOJV SL1I 3JLVAITVA ¥0 73a0W 3HL 3ILVHEITTVO ¥3HLIAT

0l J19VIIVAV Vivd 1SOD JAVH LON QI SNOILVZINVOYO LSOl

@3Q33N SI ONINOILIANOD3¥d 4<onk<NHz<omo

D. Reifer

Reifer Consultants

19 of 22

Il daNHV3IT SNOSS31T ‘"H-1S002140S

V3¥V SIHL NI d73H Ol Q3N9IsS3d 39 1SNW S3IOVINIOVd ONIT3A0 @
SNVId XYOM dI3HL 103LTHO¥V OL

YO S1¥0443 ¥I3HL ILVO0TIVY OL MOH MONX LON 0Q ATV3Y S,d3SN LSOY

ONILVWILST NI d73H d33aN A3IHL SV HONW SV (3TINAIHOS
¥V 0L J0Y¥04MYOM ONILVIOTIV) ONIAYOTINYOM NI d713H 33N S,¥3s()

379V.1d3dodv

1ONaodd V SNINVW NI AVM 9NOT V S309 9INIYIINIONT NVWNH d009 @
Alligvsn 40

AV3LSNI ALITIEVdYD ¥0d4 d3d0T73A3IQ 3dv ST3AOW “N3IL40 00 @
ATANITYd ¥3sn

TIAOW ¥V DIVIW NVI SLAIONOD ONIOVNIVd INVANNW ANV ITdWIS ANVY

(SYIOYNVIW ATTIVIO3dS3) HINYl 3JHL 3A3IT3€
OL INVM L,NOQ S,¥3SN “Q3lvidIIvd AT1L03d443d NIHM N3IAT @
S1INS3¥ 3JHL 3A31739 SAVMIV LON 0Q S,¥3s)

S13a0W
d43HLO0 SV 1J03dSNS SV 1SNr 3Y¥V SVINWIO04 ONIZIS §,1S0)140S @
ONIZIS SI ST3A0W LS0D TV NI MNIT MVaM 3IH]

IHOIY LI INVW L,NS30Q LI SAVS 1300W V 3ISNVI3ad 1Snf @
ST3AOW NO 3IONVITIY HONW 00L LNd N3L40 S,¥3sf]

Reifer Consultants

D. Reifer
20 of 22

¢ GINHV3IT SNOSS3T :H-1S001ld4d0S

JONITYIdX3 ¥3ISN 40 SYVIA JJY¥HL
43A0 NO aind S1¥0443 3IS3IHL 40 Ty

Reifer Consultants

D. Reifer
21 of 22

SIN3IWJ0TIA3A VAY d0d4 d3LvHdIvD
ATIVOI4103dS Y-1S0)L140S 40 NOISY3IA MIN V SI vay-1sojldos @

SISATVYNY ,d4I-1VHM, ¥0d 133HSAVIYCS

VY HLIM 1D23r0Yd ANV 1S0)140S 13SSY S3LVUOIIN] ¢
SSANITIANITY4-¥3sN

JAONdWI OL [yJ9 ¥3IANN ONILVYIJO ANILINOYWd Iy @
SYIOVYNYW LO3ro¥d ¥0d4 ATIVOI4193dS
d340713A3A ONI3E WILSAS T00L INIWIOYNVW 1y¥/9d V SI II-MWd @

S103royYd qT 40 3svd viva v
ISNIVOV QILVAITIVA ATIVIIYIAWI ANV a3svea-ATIVIOILSILVLS @
JYYML40S FWIL-TTVIY ANV JI4ILIN3IOS
40 SWIV3Y 3IHL OINI AINJ4VY ANV LHIIYEIY 40 MYOM LINIOd
NOILONNd 3IHL SAN3LX3 HOIHM T00L 9NIZIS Q3asvd-)d Vv SI 13SSy @

[T T T T]
INIWdO13IA3A NI ST00L

A9NVHI TTYNOILVZINVOHO
404 LSATYLVD 3HL SV 1OV AVW ST00L 3ZITVdY @

INOQ ATISV3 SI LI 3WNSSY
L,NOQ ONV S39VNOVd NIIMLIE ONIOAIdd LNOdV AHYOM @

Reifer Consultants

D. Reifer
22 of 22

@3SILY¥3AQY S,LVHM ¥3IAIT3A SYOAN3A IWNSSY L,NOT @

S$700L Ind3sn
TIVWS 40 LO7T V ANV S3ILITI9VdVYD ,d1-1VHM, 3AIAOYd @

#ATANI 1Y -HIWWVHO0NUd ,
LON ,ATTANITH4-YIOYNVW, WILSAS HNOA VY o ¢

S3YNLYI4 ¥O SNOILONNA
0L 0Q NOA SY ONIOVAOVd OL NOILNILLV HONW SV Avd @
130NTONI Q3IN¥VY3IT 3AVH 3IM SNOSSIT HOrvW 3H| @

ST00L
INIWIOVYNYIW FYYML40S HLIM JONIIH3ILX3 ¥NO q3ISSNISIA 3A,] o

e
NOISNTONOD NI

N86-30361

DEASEL : An Expert System for Software Engineering

by Jon D. Valett and Andrew Raskin

ABSTRACT

For the past ten years, the Software Engineering Laboratory [1]
(SEL) has been collecting data on software projects carried out
in the Systems Development Branch of the F1ight Dynamics Division
at NASA's Goddard Space F1ight Center. Through a series of
studies using this data, much knowledge has been gained on how
software is developed within this environment. Two years ago
work began on a software tool which would make this knowledge
readily available to software managers. Ideally, the Dynamic
Management Information Tool (DynaMITe) will aid managers in
comparison across projects, prediction of a project's future, and
assessment of a project's current state. This paper describes an
effort to create the assessment portion of DynaMITe.

1.0 Backround

Assessing the state of a software project during development
is a difficult problem, but its solution contributes to the
success of the project. By determining a project's weaknesses
early in its 1ife cycle, problems can be dealt with quickly and
effectively. For the software manager to perform this assessment
he needs easy access to detailed, accurate information
(knowledge) regarding past projects within the development
environment. He then incorporates this information with his own
knowledge of software engineering to make some assessment of a
project's strengthes and weaknesses. The DynaMITe Expert Advisor
for the SEL (DEASEL) is the first version of an expert system
that attempts to simulate this process.

2.0 Developing and Using Rules

Basically, DEASEL assesses an ongoing project by attempting
to answer a simple question such as "How is my project doing?"
To answer this question DEASEL utilizes a knowledge base of rules
for evaluating software projects. This knowledge base consists
of rules derived from two sources: the SEL database and
experienced software managers. DEASEL uses these rules along
with data on the project of interest, to give the manager a
relative rating of the quality of that project.

J. Valett
NASA/GSFC
1 of 21

Sadnfid
H

i PEE -)
" o b A T X
T v £ 4 . s Yoy

e i S e : ,

B R J’

2.1 Corporate Memory

Of course, a major effort in the development of the DEASEL
system was the actual collection of knowledge. To derive rules
from the corporate memory, former studies [2,3,4,5,6,7,8]
performed by the SEL were reviewed to find relationships that
affect the quality of a software project. That is, many studies
of data concerning the SEL environment have been done within the
Tast ten years. These studies give some idea of the cause and
effect of technologies and methodologies on a software project.
Thus, relationships 1ike "increasing tool use will increase
productivity" are found., Because of the interdependencies amoung
the items the strength of each relationship is then determined.
For example, many different factors may influence productivity.,
therefore the determination of which of these have the most and
which the 1east influence must be made. This has been a long and
difficult process because of the amount of data and the problems
with determining what data is relevant to the assessment process.

2.2 Knowledge from Software Managers

The other source of knowledge is the experienced software
managers, who have certain "rules of thumb" they use to evaluate
a software project. They are questioned to obtain this
subjective information which is then used along with the more
objective material to produce the knowledge base. Again the
determination of the strengthes of the relationships must be
performed. The entire process of collecting knowledge is long
and difficult and has only just begun for the DEASEL project.

2.3 Representing the Rules

After collecting a preliminary set of knowledge, thought
began on how to actually represent this knowledge. The initial
work on knowledge representation for DEASEL was directed at using
standard expert system techniques, including if-then production
rules., But soon the discovery was made that knowledge regarding
the assessment of a software project's development is more
naturally represented in a different manner, In fact, the
ovérall conclusion drawn from an assessment is quite different
from that drawn by a traditional expert system. The difference
1ies in the type of question answered by DEASEL. The traditional
medical expert system, such as the often cited MYCIN [91],
answers a question 1ike "What disease does patient X have?"

Then, given some data on the patient the system determines the
disease. DEASEL, on the other hand, must answer the question
"How is project X doing?" Thus, it must give a rating to the
system based on the facts given to it. The analagous question in
the medical domain would be "How is patient X's health?"

In order for DEASEL to answer the question "How is project X
doing?", it needs two different types of knowledge. The first
type of knowledge is the assertions which relate to the specific

J. Valett
NASA/GSFC
2 of 21

project in question, This includes the facts known about the
project as it currently stands. The second type of knowledge is
the detailed representation of how different facts affect the
overall development process of a project. These are the more
general "rules"™ on what affects the quality of a software
project. These rules are set up based on the knowledge described
earlier from the data base and the software manager. They are
used to describe all of the factors which affect a software
project!s quality and all the sub-factors that affect those
factors, etc. For this reason this system of knowledge
representation, which is unique to DEASEL, is called factor-
based. Each rule in the factor-based representation scheme
specifies a system and its factors (sub-systems) and the weight
(strength of the relationship) each factor has on the system.
Thus, between the specific assertions about the project and the
general rules concerning software development within the SEL
environment DEASEL can rate a project.

2.4 An Example Rule’

To explain how this rating process works, here is an example
rule from DEASEL's knowledge base:

The factors that affect Computer_Environment_Stability are

1) Operating_System_Stability .3
2) Software_Tool_Stabiltiy .2
3) Hardware_Stability .4
4) Computer_Env_Proc_Stability .1

The number associated with each factor is a weight, and the sum
of the weights must always total one. This rule states that the
four 1isted factors have an affect on the quality of the
Computer_Environment_Stability. The rule's weights indicate that
Hardware_Stability is the most important factor in the assessment
of Computer_Environment_Stability, while
Computer_Env_Proc_Stability is the least important factor.

DEASEL uses the ratings of all four factors to determine a rating
for Computer_Environment_Stability.

2.5 Deriving Conclusions

DEASEL's overall assessment process consists of trying to
assign a rating to each of the quality indicators specified via
the knowledge base. Obviously just answering the question "How
is project X doing?" will not give the manager specific enough
information about his project. Therefore, the knowledge base
specifies the top level factors DEASEL should rate. Currently,
the knowledge base has four such quality indicators:
reliability, predictability, stability, and controlled
development. Thus DEASEL actually gives information (a rating)
on each of these four indicators which gives the manager an
assessment of how his project is doing in these areas. 1In order

J. Valett
NASA/GSFC
3 of 21

to rate these four factors DEASEL must find the rules which
relate to these factors and assign a rating to these rules. That
is, DEASEL reaches a conclusion on what it believes is the rating
of these indicators. For DEASEL to do this it must first reach
the conclusions on the factors which affect these indicators. Of
course, these factors may have rules which specify their
assessment, so this process continues until all of the necessary
conclusions are reached.

DEASEL reaches conclusions in one of three ways:

1) The conclusion can be an assertion from the knowledge
base.
2) DEASEL can infer the conclusion based on other
conclusions and its rule base,
3) If both 1) and 2) fail, it can ask the user to supply
the conclusion.
The three types of conclusions combine to allow DEASEL to make
its assessment of the supplied quality indicators. The basic
process is to first find a rule for one of the quality indicators
then to resolve all of the conclusions necessary to reach a
conclusion for that indicator. This process continues by
reaching conclusions in each of the three ways, until all the
conclusions are resolved.

To fully understand the rating process one must also
understand how these conclusions are reached. A conclusion is
reached when a rating has been assigned to a factor in the
knowledge base. A rating is defined as a number between zero and
one, the higher the rating the better the factor's quality. A
rating of .5 would be average or normal. Note that the ratings
always indicate quality, for example a rating of .7 for error
rate as a factor would indicate a Tower than normal error rate.
In addition, every conclusion has an associated certainty. A
certainty is the probability that the conclusion's rating is
correct within some fixed delta. Currently, DEASEL sets delta at
0.1.

A11 three types of conclusions have both a rating and a
certainty. Type 1 conclusions are really the assertions
described earlier. Currently, the asssertions are entered by
hand into the knowledge base. In the future this process will be
automated and will be done by the DynaMITe tool, via the SEL data
base. The certainties for these conclusions are generally very
high (around .9) because the ratings are basically comparisons
between real data and average or normal numbers, Conclusions of
type 2 are computed using the following formulae:

N

Rating = EE‘ (Rating of factor(i) x Weight of factor(i))
i

Certainty = j&(Certainty factor(i) x Weight of factor(i))

where n is the number of factors in the rule

Thus, a rule for acertain factor is given a conclusion by using
these formulae to calculate its rating and certainty. The schema
used here should look familiar to anyone with knowledge of

J. Valett
NASA/GSFC
4 of 21

probability. In its typical application, however, each of the
factors in the system being rated must be independent. 1In the
complex and unfamiliar domain of software engineering, such an
assumption may be incorrect. Our computations could therefore be
s1ightly or grossly in error depending on how much the knowledge
base violates this constraint. Future DEASEL knhowledge engineers
must keep this in mind when creating and modifying the rule base.
Type 3 conclusions are necesssary when the system cannot use type
1 or type 2 conclusions. In order for the system to complete an
assessment it must have conclusions for all the factors in the
knowledge base. Since expert systems must deal with incomplete
knowledge, whenever DEASEL cannot reach a conclusion for a factor
it assumes a normal rating (.5) with a certainty of .2. Note
that the .2 is the probability that the rating will be correct
within + or - deltar, which in effect makes for a meaningless
conclusion. Whenever DEASEL is forced to do this, it makes a
note to ask the user if the conclusion can be provided. Thus,
the user can later provide the answers to questions about the
incomplete knowledge. Once these questions are answered, DEASEL
gives the rating supplied by the user a certainty of 1.0.

2,6 Current DEASEL Capabilities

The capabilities of the current DEASEL system include
allowing the user to obtain an assessment of his project, if some
assertions exist for that project. After the initial assessment
is given the user has three options 1) asking for an
explanantion, 2) answering questions about his project, and 3)
playing what-if games. For any conclusion, the user can ask for
an expalnantion of how the conclusion was reached. The
explanation consists of the conclusions DEASEL reached about the
factors of the original conclusion. That is, the user is able to
ask DEASEL what caused it to reach any specific rating for any
factor. This process can continue as the user asks for
explanations of the factors previously reported on, and so on,
Earlier we mentioned that DEASEL makes a note of type 3
conclusions, The user may opt to answer these questions as he
wishes. He may also respond to the questions by indicating he
does not know the answer. In this case, DEASEL maintains the
meaningless conclusion reached earlier. Answering questions fis
encouraged because it leads to more certain conclusions. What=-1if
games aid the manager in evaluating the effects of changes he may
wish to make in his project. This process allows the user to
enter controls into the system, by actually changing conclusions.
That is, the user can see what will happen if he changes certain
conclusions in the knowledge base. After changing one or more
conclusions he can then reassess the project, to determine the
affects of these changes. This is an important feature of the
DEASEL system, because it allows the manager to determine how he
might be able to improve his software project.

J. Valett

NASA/GSFC

5 of 21

3.0 Summary

Although the current version of DEASEL does begin to attack
the problem of project assessment, much more work is needed to
make the system a useful tool. Three potential directions exist
for future work: adding to and verifying the rule base,
verifying the accuracy of the assessment process, and automating
the creation of the assertion portion of the rule base. Al1l of
these areas will require time and effort to complete, but are
necessary for successfully determining the validity of this
project. Obviously, DEASEL is but an initial attempt at solving
the problem of automating the process of assessing the state of
an ongoing software project. DEASEL has, however, given some
insight into the problem and ways to solve it. Hopefully this

initial work will lead to techniques for solving the problem more
completely.

J. Valett
NASA/GSFC
6 of 21

REFERENCES

SEL-81-104, The Software Engineering Laboratory, D.N. Card,
F.E. McGarry, G. Page, et al., February 1982

SEL-83-002, Measures and Meirics for Software Development,
D.N. Card, F.E. McGarry, G. Page, et al., March 1984

SEL-79-002, The Sofiware Engineering Laboratory: Relationship
Equations, K. Freuberger and V.R, Basili, May 1979

McGarry, F.E., Valett, J., and Hall, D,. Measuring the Impact
of Computer Resource Quality on ihe Sofiware Development
Process and Product, Proceedings of the Hawaiian International
Conference on Systems Sciences, January 1985

SEL-85-001, Comparison of Sofiware Verification Techniques.,
D. Card, R. Selby, F.E. McGarry, et al., April 1985

SEL-82-004, Collected Software Engineering Papers: VYol I,
July 1982

SEL-83-003, Collected Software Engineering Papers: Yol ll,
November 1983

SEL-85-003, Collected Software Engineering Papers: Yol I11l,
November 1985

Shortliffe, E.H., Computer-Based Medical Consultations: Mycin,
Eilsevier, North Holland, New York, 1986

J. Valett
NASA/GSFC
7 of 21

THE VIEWGRAPH MATERIALS

for the

J. VALETT PRESENTATION FOLLOW

J. Valett
NASA/GSFC
8 of 21

0459 / YSWN
ULYSDY MaLPUY
PUD
1o]v A uor

buiissuibu aipmyjos Joj
WeysAS padx3 uy & TISYAC

NASA/GSFC

J. Valett
9 of 21

‘1o8loud 84pM}joS jusnNd D
$$95SD puUD 9zZAUD A||D2I4DWIOND 0} SJsboubW 8DMJJOS JO 8BPaIMOUN
ay} puo Alowsuw syplodioo Buyjpibajul wayshs |pjuswiiedxe uo sl J3SYIQ

_adoys poob k| sJobDUD
ur si joslodd, J 8IDM}0S
d \ paoualiadx3
. 113
JoBDUDW S 1
,—om_ox_n_ A l_mm<mQ . < 3
\ g0
N
cBurop poafosd) ENGE
fw smoy V1vQ
14S

135v4d

J. Valett
NASA/GSFC
10 of 21

;1003 aupmyfos jnfasn
0 03UL PaINLBaIUL 3Q U0LPOULLOS UL SVY) UD)

SU0 WL f UL S1Yy) juasaudad fipisva am uD)

;pajona)xa 3q joafoud auvmifos
fu1883SSD 0] JUDAB]RL UOLIOULLOS UL UD)

SINSSI AN

&

¢

11 of 21

NASA/GSFC

J. Valett

jupjsoduwy sabuoyo ubisap jo ou -
upjiodwy Asea Appgoys Buypls -
oupjtodw Jouw sabupyd *oads Jo ‘ou - ‘
kq pajosyp yaslosd b o Apjigpys abpajmouy jo 40| V,, e

‘B
° (subiom)

b
(siybrom) sdiysuoiypjed Jo yibusss e

sdiysuoyypjas Jo yjbusiiS e

Apaigonpoad paspauoul
&— 88N |00} PasDaIou

uoljpwiiojul 8A1o8lgng e ‘Bo
sdiysuolpjed 40} %007 @

1abDunj] a4pmyJog wiod] | Adowlajy 23040d40) UWOL]

JO0ITMONA ONILIITI0D

J. Valett
NASA/GSFC
12 of 21

««ONILVH,,
13Sv3d

; Buiop 109floud
¢BUIOP 19804 suiesy s uaned

ey} S;MOH

««SISATVNYVY,,

WALSAS L¥3dX3 [{ &7
TYNOLLIQVHL »&m

;oAey 1uaied au}
S0P 9seasIp jeym

$1o8load Aw
yim Buoim sjeym

NIVINOQ ONIHI3INION3T NIVINOQ TVOId3IN FHL
FHdVML40S 3FHL

NOILS3IND FHL

J. Valett
NASA/GSFC
13 of 21

juswdojans(vm\N_o:coo .
HIIGDYS

Aylliqpioipauy

Ajiligoijey o

uo 4ooloud eyy QISSY
0f

Aflligojs ubiseq g
opod 10 alpJ abuby) |

940 AllIgpI[ed @oUBN|JUL DY} SJOLOD) UIDW By

‘Ha
justusboupw 84omijos U0 SIINY
puy
Ipwiiou si sebubyd ubisap Jo JaguInN
[pwiou aA0qo S| 8pod Jo alpJ sbubyy

,Gm.o‘_a or:omam oyl {noqgo MZO_._.mumwm<

a8/}

" NOILS3ND 3HL YIMSNY Ol

NASA/GSFC

J. Valett
14 of 21

fiquingrad Burpnd

_ |
. ~O
7' 8pod JO 8jnl o@co%..,l!gﬁ%w

6
109foud 91j10ads — SUO}IeSSY

| ¢* Apngojs ubisep
syybram /© 9p0od JO 8|DJ %co%ullzéi
84D Ajiqpye4 Buouanjjul s104oD}

189_@3.
buipniauod

pJousb — sany

3SvE 3903TMONA JHl

J. Valett
NASA/GSFC
15 of 21

SNOILYIND VI
SNOILY3SSY
S3NY

Ray

¢ Ajigpys ubisag
[+ 8poy o ajpy abupy)
84D A}Igpl@Y JO S40JOD 4

g|dwox3 ajawIS Y

SS3004d ONILVY 3HL

16 of 21

NASA/GSFC

J. Valett

SNOILYINOTV
SNOILYISSY
S3NY

fay

y° ubiseg jo Ayjony
9° sabupyy ubissq jo ‘oN

94D Ayljigois ubisag Jo s10yoD 4

¢ Ajngoys ubisaq
6° T 8po) jo ajpy 8bubyr——¢9 plt [0 8po) Jo sy abuoy)
9D AyljIgpijey Jo S1040D 4

ajdwpx3 9jdwiS

553004d ONILVY JHL

NASA/GSFC

J. Valett
17 of 21

SNOILYINITVI .
SNOILYISSY
S3NY ég Gl
fiay sabuoyy ubisaqg jo ‘ON R’ | ¢ ubisaqg jJo Appnp

Nm.ew_. y* ubiseq jo Ayjonp
I° 60° 9 sabuoyy ubisag Jo ON
€8 17" 8.0 Apgos ubisag jo siojon

| S>$Z70 90" ¢ Ajgols ubisag
§ 7 9poy Jo ajpy sbubyy—->¢9 ¥l [+ 8po) jo 8oy sbuby)
[8 07 84D Ajjigpyay jo S.0joD

g|dwox3 adwis v

SS3008d ONILVY JHL

J. Valett
NASA/GSFC
18 of 21

[olwJou pajp. | .

2q uayj pinom A}iqoyjay PO,
L,emo] fizan som subisap s oslo.d

agp4 abunyd Awe [v 10y y, oA Jo Ajpnb ays sI joum
sawing) |, JI-1bUp, Abld SUOHS3NY Jomsuy

pwuoN S Ajgos ubisaq

puo ybiy Atep si ajpy abupy)
| ,,A10ULLOU M0]3G
Appgoad Awe v Ayy, LoBurop joaford hw smoy,

Ajuipjaed YbIH ypim
[pWJIoN mojeg si Ajijigoiiey

burpoy o uipjdx3 108loJ4 D SSassy

IS8} Jlun pup 8pod UO S3NJ GZ jnoqy e

SILITGYAYD WILSAS LINIMND

NASA/GSFC
19 of 21

J. Valett-

SU01).4388D [0 U0L)IDLAUAD 3)DULOINY
§8390.40 JUIULSSISSD JUILLND DPDPLUD A
SaINA HULISIXD 3)DPL)D A

sasoyd 4ay)o woLf SIML PPy

SNV'1d

NASA/GSFC

J. Valett
20 of 21

$SAUINJesn SulwJa)ep 0} Aupe 00} Inq ‘pajosbejul aq upd Y -
21003 aupmjfos nfasn
D 0JuUL PaypLbajur 2q uouDWLLOLULY SWYF UD) °§

aAl04se st ABsypss o adoy pup ‘oS wuly) oM -

Juorpoutofur svyy juasasdas Anpsna am un) g

buiwnsuod awly pub Y0P S INQ ‘S84 -

;paronuiza aq joaload aunmyfos
61883880 0] JuUDAAIAL UOLPDUWLLOS UL UD))

SANSSI AJA

NASA/GSFC

1. Valett
21 of 21

N86-30362

AN EXPERIMENTAL EVALUATION OF ERROR SEEDING

AS A PROGRAM VALIDATION TECHNIQUE

John C. Knight Paul E. Ammann
Department of Computer Science
University of Virginia
Charlottesville, Virginia.

A Summary

Submitted To The Tenth Annual Software Engineering Workshop
Goddard Space Flight Center
Greenbelt, Maryland.

J. Knight
University of Virginia
lof4

P

ey

The error seeding technique was originally proposed by Mills [1] as a method
for determining when a program has been adequately tested using functional or
random testing. The procedure resulted from a desire to apply statistical methods to
the problem of predicting the number of errors in a program in the hope that the
number of errors discovered during testing could be used to estimate the number of
remaining undetected errors. The method involves deliberately introducing or seeding

artificial errors into a program and subsequently testing that program.

Error seeding has the desirable property that it is apparently simple to employ
and it provides a stopping condition for testing. Unfortunately, it has the major
drawback that, in order to work effectively and for the existing statistical model to

apply, it relies upon the following three assumptions:

(1) Indigenous errors, those introduced by the programmer, are all approximately

equally difficult to locate.
(2) Seeded errors are approximately as difficult to locate as indigenous errors.
(3) Errors, whether indigenous or seeded, do not interfere with one another.

A priori there is no reason to believe that any of these assumptions hold. The
first and third seem reasonable. However, error seeding has been criticized on the
basis of the second assumption. It seems unlikely that realistic seeded errors can be
generated but no definitive, empirical evidence for any of the assumptions has been
gathered previously. We have performed an experiment designed to check the
validity of each of the underlying assumptions. In particular, we were interested in

evaluating very simple, syntax-based algorithms for generating seeded errors.

J. Knight

University of Virginia

20of 4

Briefly, as part of a separate experiment [2, 3], twenty-seven Pascal programs
have been written independently by different programmers to a single specification.
Thus all twenty-seven are intended to perform the same function, the processing of
radar data in a simple antimissile system. As part of the other experiment, the
programs have been suybjected to one million tests, and a great deal is known about
the indigenous errors present in the programs. These programs represent an excellent
starting point for an experiment with error seeding. Any results obtained can be

averaged thereby eliminating any bias attributable to individual programmers.

In the error seeding experiment, seventeen of the twenty-seven programs were
selected at random, errors were seeded into all seventeen, and the resulting programs
were tested. The algorithms used for seeding errors were very simple: two
algorithms modified the bounds on for statements, three algorithms modified the
Boolean expression in if statments, and one algorithm deleted assignment statements.
Each of these algorithms was applied four times to each of the 17 programs for a
total of 408 modified programs, each of which contained one seeded error. The
programs were tested using 25,000 of the 1,000,000 test cases from the previous

experiment.

The metric used for evaluating the seeded errors was the mean time to failure
(MTF). The MTF for a particular program containing a seeded error is defined as
the average number of test cases executed between detected failures. The MTF's for
the seeded errors had a wide range. Some seeded errors caused a failure on every
test case; some had a very small number of failures in 25,000 test cases; and others
caused no failures at all in 25,000 test cases. We conclude that it is possible to
generate seeded errors that are arbitrarily difficult to locate, albeit at the expense of
creating others that are easy to locate. These results suggest, surprisingly, that it is

possible to comply with the second assumption listed above.

J. Knight
University of Virginia
3 of 4

An examination of the MTF's of the indigenous errors revealed a similar wide
range of failure rates. In fact, there was a very strong resemblance in mean time
to failure between the resilient seeded errors and the indigenous errors. However, in

neither case were errors equally likely to be discovered, in conflict with the first

assumption cited above.

Finally it was discovered during the experiment that in two cases a seeded
error corrected, or pariially corrected, an indigenous error. Clearly, the implication
is that assumption three above was violated. We conclude that the first and third
assumptions, those that seem most believable, are in fact violated, and that the
second, the one that seems totally unreasonable, can be complied with. Using the
data from this experiment, the underlying model of error seeding can be modified

and error seeding made a useful, practical technique.

REFERENCES

(1) Mills, H.D., “On The Statistical Validation of Computer Programs’, in Software

Productivity, Little Brown, Toronto.

(2) Knight, J.C., and N.G. Leveson, “A Large-Scale Experiment In N-Version
Programming”, Proceedings of the Ninth Annual Software Engineering Workshop,

NASA Goddard Space Flight Center, November 1984, Greenbelt, MD.

(3) Knight J.C., and N.G. Leveson, “A Large Scale Experiment In N-Version
Programming” Digest of Papers FTCS-15: Fifteenth Annual Symposium on Fault-

Tolerant Computing, June 1985, Ann Arbor, Ml

J. Knight
University of Virginia
4 of 4

N86-30363

Quality Assurance Software Inspections at NASA Ames
Metrics for Feedback and Modification

Greg Wenneson, Informatics General Corporation

Software Inspections are a set of formal technical review procedures held at
selected key points during software development for the purpose of finding defects
in software documents. Inspections are a Quality Assurance tool and a Management
tool. Their primary purposes are to improve overall software system quality while
reducing lifecycle costs and to improve management control over the software
development cycle. The Inspections process can be customized to specific project
and development type requirements and are specialized for each stage of the
development cycle.

For each type of Inspection, materials to be inspected are prepared to predefined
levels. The Inspection team follows defined roles and procedures and uses a
specialized checklist of common problems in reviewing the materials. The materials
and results from the Inspection have to meet explicit completion criteria before the
Inspection is finished and the next stage of development proceeds. Statistics,
primarily time and error data, from each Inspection are captured and maintained
in a historical database. These statistics provide feedback and feedforward to the
developer and manager and longer term feedback for modification and control of
the development process for most effective application of design and quality
assurance efforts.

HISTORY

Software Inspections were developed in the early mid-1970s at IBM by Dr. Mike
Fagan, who was subsequently named software innovator of the year. Fagan also
credits IBM members O.R.Kohli, R.A.Radice and R.R.Larson for their contributions
to the development of Inspections. In the IBM Systems Journal [1], Fagan described
Inspections and reported that in controlled experiments at IBM with equivalent
systems software development efforts, significant gains in software quality and a
23% gain in development productivity were made by using Inspections based
reviews at the end of design and end of coding (clean compile) rather than
structured walkthroughs at the same points. Fagan reported that the Inspections
caught 82% of development cycle errors before unit test, and that the inspected
software had 38% fewer errors from unit test through seven months of system
testing compared to the walkthrough sample with equivalent testing. Fagan also
cites an applications software example where a 25% productivity gain was made
through the introduction of design and code inspections. As further guidelines for
using Inspections, IBM published an Installation Management Manual [2] with
detailed instructions and guidelines for implementing Inspections.

Inspections were introduced to NASA/Ames Research Center in 1979 by
Informatics General Corporation on the Standardized Wind Tunnel System (SWTS)
and other pilot projects. The methods described by IBM were adapted to meet the
less repetitious character of Ames applications and research/development software
as compared to that of IBM’s systems software development. Though not able to
duplicate IBM’s controlled environments and experiments, our experience at Ames
of gains in quality and productivity through using Inspections have been similar.
From a developed Wind Tunnel software application which had been reviewed in
structured walkthroughs and then later was rewritten and reviewed using

G. Wenneson
Informatics General Corp
1 of 22

Inspections, the Inspected version had 35-65% less debug and test time and about
40% fewer post-release problems. Inspections implemented prior to unit test have
been shown to detect over 90% of software’s lifetime problems. Inspection results
have been sufficiently productive in terms of increased software quality, decreased
development times, and management visibility into development progress, that
Inspections have been integrated into Informatics’ development methodology as the
primary Quality Assurance defect removal method.

When Inspections were first implemented at Ames, only design and code Inspections
were introduced. The scope and usage has expanded so that currently, Inspections
are used to review both system level and component level Goals (requirements)
Specifications, Preliminary Design, Detailed Design, Code, Test Plans, Test Cases,
and modifications to existing software. Inspections are used on most Informatics
staffed development tasks where the staff level and environment are appropriate.
Inspections implementation and usage at Ames are described in NASA Contractor
Report 166521 [3]. Within Informatics contracts outside of the Ames projects,
Inspections are also used to review Phase Zero (initial survey and inventory of
project status), Project Goals, and Requirements Specifications generated through
structured analysis.

PARTICIPANTS

The Inspectors operate as a team and fill five different types of roles. The
Author(s) is the primary designer, developer, or programmer who prepares the
materials to be inspected. The author is a passive Inspector, answering questions or
providing clarification as necessary. The Moderator directs the flow of the
meetings, limiting discussion to finding errors and focusing the sessions to the
subject. The moderator also records the problems uncovered during the meetings. A
Reader paraphrases the materials, to provide a translation of the materials
different from the authors’ viewpoint. One or more additional Inspectors complete
the active components of the team. A limited number of Observers, who are silent
non-participants, may also attend for educational or familiarizing purposes. Of the
team members, the moderator and a reader are the absolute minimum necessary to
hold an Inspection.

Team composition and size are important. Composition using knowledgeable
designers and implementors having similar background or from interfacing
software enable cross training of group members; understanding is enhanced and
startup time is lessened. However, tcam members must be sufficiently different so
that alternate viewpoints are present. Fagan recommends a four member team
composed of a moderator and the software’s designer, implementor, and tester. Our
experience is that the most effective team size seems to be three to five members,
exclusive of author and observers; more than this is a committee, less may not have
critical mass for the process. We also try to keep the team together for all of the
sof tware’s Inspections.

TOOLS ‘

Written tools are used by the participants during the Inspections process to assist in
the preparation, the actual sessions, and the completion of the Inspection.
Standards are necessary as guidelines for preparing both design and coding
products. The Entrance Criteria for inspection materials define what materials are
to be inspected at each type of Inspection, the level of detail of preparation, and
other prerequisites for an Inspection to occur. Checklists of categories (Data Area
Usage, External Linkages, etc.) of various types of problems to look for are used
during the sessions to help locate errors and focus attention on areas of project

G. Wenneson
Informatics General Corp
2 of 22

concern. The Checklists are also used by the author during his preparation of
materials and by the inspectors while they are studying the materials. Exit Criteria
define what must be done before the Inspection is declared complete and the
materials can proceed to the next stage of development. Each of these tools will
have been customized for each projects type of development work, language,
review requirements, and emphasis that will be placed on each stage of the
development process.

PROCEDURES

An Inspection is a multi-step sequential process. Prior to the Inspection, the Author
prepares the materials to the level specified in the Entrance Criteria (and to
guidelines detailed in the project development or coding standards). The moderator
examines the materials and, if they are adequately prepared, selects team members
and schedules the Inspection. (IBM lists these preparations as the Planning step.)
The Inspection begins with a short educational Overview session of the materials
presented by the author to the team. Between the overview and the first Inspection
session, Preparation of each Inspector by studying the materials occurs outside of
the meetings. In the actual Inspection sessions, the Reader paraphrases while the
Inspectors review the materials for defects; the Moderator directs the flow of the
meetings, ensures the team sticks only to problem finding, and records problems on
a Problem Report form along with the problem location. Checklists of frequent
types of problems for the type of software and type of Inspection are used during
the preparation and Inspections sessions as a reminder to look for significant or
critical problem areas. After the Inspection sessions, the moderator labels errors as
major or minor, tabulates the Inspection time and error statistics, groups major
errors by type, estimates the rework time, prepares the summaries, and gives the
error list to the author. The author Reworks the materials to correct problems on
the problem list. Follow-up by the moderator (or re-inspection, if necessary) of the
problems ensures that all problems have been resolved.

In certain cases, a desk Inspection or "desk check" may be a more effective use of
time than a full Inspection. Desk Inspections differ from normal Inspections in
that during the preparation period each inspector individually records errors found
and a single Inspection session is held to resolve ambiguities in the problems. The
moderator compiles all collected error reports to produce a single report. All other
Inspection steps proceed normally. Desk Inspections can be appropriate for code or
design that the team is familiar with and that has already been through previous
Inspections. Desk Inspections do not have the group synergy generated during
"normal" Inspections. The SWTS Inspections database for FORTRAN code
Inspections indicates that the desk check has an 80% error detection rate but only
takes 40% of the time required of a full Inspection.

STATISTICS

The statistics captured from the Inspection and tabulated by the moderator consist
of time and error values. The time statistics are average per person preparation
time (excluding the author) and Inspections sessions meeting time, both normalized
to a thousand lines of code (KLOC). The error statistics are the numbers of major
and minor errors detected, also normalized to a KLOC. As part of the tabulating
and summarizing process, error distributions of major errors by Checklist headings
are recorded and summarized for the Inspection as a whole. The tabulated statistics
are entered into a database as weighted averages by size in lines of design or code
and keyed by expected implementation language and type of Inspection. The SWTS
Inspections database currently contains almost 250 entries of data for FORTRAN
and Assembler languages for the Goals (Functional Requirements), Preliminary

G. Wenneson
Informatics General Corp
30f 22

Design, Detailed Design, and Code (desk and non-desk check) types of Inspections
held on developed Wind Tunnel System software from 1980 through 1985. Over
half of the entries are for code Inspections. Figure 1 contains summary figures
from the database. The database summaries provide guidelines from which general
conclusions and assumptions can be drawn. The database was generated as a
development and management tool from several related SWTS project’s Inspections
and not from tightly controlled experiments. As such, when comparing individual
Inspections figures to the database figures, variances from one-half to twice the
average amounts summarized from the database are not considered extraordinary.

STATISTICS USE

The Inspections statistics in their raw and weighted forms can be used by the
author, the design team and manager, the project manager, and Software
Engineering as feedback, feedforward, and control mechanisms for individual,
team, project and Inspections process behavior modification for future work to
achieve better results. In addition, the statistics can be used in the current project
and for future work and projects for tracking, estimating, planning, and
scheduling of development and QA work.

The author uses the statistics to determine immediately what is deficient in
inspected design or code and, over the longer term, patterns and general problem
areas on which to focus attention for future work. The problem list, besides
providing a working list of detected problems, includes locations of what needs to
be fixed before the next development stage can proceed. Additionally, a
distribution of major errors by checklist category across each module provides
warning signals of error prone modules and high or higher density error rates by
error type. A history of high error rates of certain error types also provides a
pointer to design areas which need more work or training to develop or better
understand.

The programming team and manager use error distribution by type and module
from individual Inspections and Inspections of related software to locate common
problem areas and thus focus future work and communication to diminish these.
Error rates higher than normal for the group as a whole or error distributions in
particular areas may indicate a group misunderstanding or a misstatement of the
requirements. Higher error densities in modules interfacing to existing (or new)
software, for example, can alert and direct effort to understanding the interface or
provide warning to another group to clarify or improve that interface. For the
designer and the team manager, lines of design (or lines of code, depending on
development stage) and complexity per module give immediate feedback for design
considerations of module size, cohesion, and coupling; this additionally provides an
opportunity to ensure that modules are not proliferating from one design stage to
the next. The completion of any individual Inspection along with module quantity
and sizing gives quantitative and qualitative feedback for validity of component
estimating, scheduling, and tracking information.

The Project Manager utilizes the statistics to help locate trends in various problem
categories and help the team improve performance through group meetings or
education. The statistics provide a quantitative evaluation of software correctness
and allow prediction, based on Inspections held, of error prone sections of design
or code, in order to concentrate development, QA, and testing resources on the most
important areas. Additionally, each Inspection’s results can be "validated" to ensure
proper procedures were followed and the results are legitimate as compared to the
project database. As an example, for a FORTRAN detailed design inspection, time

G. Wenneson
Informatics General Corp
4 of 22

SUMMARY OF INFORMATICS SWTS PROJECT INSPECTIONS STATISTICS

Type Total Total No DENSITY-OF-PROBS. TIME-PER-PERSON
of Number "Lines" Per 1000 Lines Per 1000 Lines
Inspect’'n Lang. Held Inspected Major Minor Total Meet’g Prep’n Total
CODE - ALL Lang 94 51186 22.0 59.9 819 4.6 40 8.7

NON-DESK

Only FORTRAN 90 49389 224 60.4 82.8 4.6 4.1 8.7
ASSEMBLY 4 1797 10.1 44.5 54.6 5.0 26 1.7

CODE - ALL Lang 47 23206 21.0 51.3 72.3 3.9 - 39

DESK
FORTRAN 43 21308 19.1 48.1 67.2 3.7 - 3.7
ASSEMBLY 4 1898 42.6 87.6 1303 6.3 - 6.3

DETAILED

DESIGN ALL Lang 44 10349 76.74 1446 2213 14.5 9.8 243
FORTRAN 40 9205 83.1 1434 226.5 14.5 9.2 23.7
ASSEMBLY 4 1144 253 1539 1792 14.3 144 287

PRELIMINARY

DESIGN ALL Lang 43 13268 68.1 107.5 175.7 10.8 54 16.1
FORTRAN 41 12570 54.3 89.8 144.1 9.1 55 146
ASSEMBLY 2 698 3166 4268 7434 39.8 3.7 43.6

This chart summarizes the statistics from Informatics inspections on the
NASA Ames SWTS project. The statistics are weighted averages, each
inspection being weighted by its size, in lines of design or code.

Figure 1

SWTS Inspections Database Summaries

G. Wenneson
Informatics General Corp
5of 22

guidelines are 23 hrs/KLOD (Thousand Lines of Design) per person for
preparation plus meeting time and the team can expect to find 83 major and 143
minor problems per KLOD. Meeting times and error rates significantly different
should be examined to determine their cause. A trend toward increasing error rates
may mean that not enough attention is being directed to proper design. A
decreasing error rate may mean design is becoming more effective or, when
accompanied by decreasing preparation and meeting times, may mean Inspections
are becoming less effective.

The statistics are also used to modify the Inspection process itself or its
application. At the beginning of the project, the entrance and exit criteria, the
checklists, and the methodology and standards are specialized to the project’s
particular development environment, languages, and review requirements. As
statistics are compiled, evaluations of the data may lead to modifications to the
entrance criteria to change the level of materials preparation, to the checklists to
alter the attention given to certain design or code areas, and to the project
standards to remove ambiguity or set new standards as necessary. Removing
software components from an Inspection requirement or adding or deleting an
Inspection as a quality gate at a particular design stage to more optimally use
available time are options made more apparent by the statistics.

DATABASE ANALYSIS

Examination and analysis of the SWTS Inspection database indicate correlations
between preparation time, meeting time, inspection rate, and errors detected. These
correlations and others allow the overall Inspections procedures to be modified and
guidelines established for the optimal conduct of Inspections within a project.

For FORTRAN code Inspections, errors detected are related to inspection rate
(LOC inspected per hour), figure 2. Most sessions inspected code at the rate of 100
to 300 LOC per hour and detected between 10 and 80 major errors/KLOC. When
the Inspection rate is too rapid, the error detection rate falls gradually. When the
Inspection rate is excessively slow, there is a wide range of error densities. For
excessively slow Inspection rates, we believe this wide range of error densities
results from Inspecting two types of materials: "Difficult Materials" where the
materials are complex and require a slower Inspection rate to evaluate but result in
a normal to above normal error density; and "Poorly Prepared Materials" which
were not ready for Inspection, but were still inspected and thus generated a large
number of errors, were difficult to understand, and slow to inspect. The inspection
of "Poorly Prepared Materials" represent abnormal situations which the moderator
is supposed to prevent prior to scheduling or holding an Inspection. To this end,
there are also cut-off limits before and within the Inspection, if the Inspected
materials are too hard to understand and/or are producing too many errors, that is,
they are probably not ready to be Inspected, the Inspection is stopped and the
materials are returned to the author to be properly prepared.

There is a linear correlation between inspection rate and preparation rate
(LOC/hr), figure 3. Materials requiring a slower preparation rate also experience a
slower Inspection rate, and vice versa. We believe the correlating factor is
complexity of materials, more "difficult" code takes more inspector preparation
time and more inspection time (lower inspection rate).

G. Wenneson
Informatics General Corp
6 of 22

Errors Detected vs. Inspection Rate

Inspection Rate vs. Preparation Rate

Informatics SWTS Inepection DB nformatics SWTS inspection OB
00 08
o
o
¢ 074 o
P i 0
) {084 D
1 DE 2 +
4] I 4 o o
9 N 051 g o¢
i’ 300 4 § o °. 0
N 5} X o a
4 04 .
t o] "gtof g ¢ * '
[4] -
5 ng saun ’ o i ™ K o ']
e g%u o f g o% %lf‘ * ’
0 po W& O & 024 @ o4]
% 0 nuﬂ g, 0 3 o ?&p T
BD &CJP g e 4 uiaq’ ﬂu o]
o PolpPont o g o O 0.1 "J:""Rnﬂu te
0 a0 po 0& g g %ﬂ '
~ - ? a 0o 8 g bey +
04— T Y T T T T 0 T T T T T T T
0 0.2 0.4 0.6 08 1 0 0.2 04 0.6 08

Fe Rote (KLOC, — -
ortron Code fmsp Rote (KLOC/Hr) ~~> Mﬁwﬁmoxtlvmocﬁt) H>*"

Figure 2 Figure 3

Of any Inspection, we believe the Preliminary Design Inspection is the most
critical Inspection to hold, as it helps find modularization errors, data definition
errors, and can help to emphasize software re-usability before unit development
begins. Based upon major error detection rate and translating preliminary and
detailed design lines of design (LOD) to implemented lines of code (LOC), the
preliminary design Inspection detects (and removes) a greater number of errors.
The translation from lines of design to lines of code is based on a development
methodology that requires a preliminary design modularization with logic
development where 1 LOD can eventually be coded by 15 to 20 LOC; detailed
design logic development is where 1 LOD can be coded by 3 to 10 LOC. Using
major errors normalized to estimated implemented LOC, the preliminary design
Inspection finds and fixes about 1000 errors per KLOC, the detailed design
Inspection locates about 600 errors per KLOC, while the code Inspection is least
effective by detecting a mere 20 errors per KLOC. Using the generally accepted
cost to repair of an order of magnitude for errors between successive development
steps further emphasizes these figures for cost savings purposes: a few ounces of
prevention are worth pounds of cure. The SWTS environment uses walkthroughs
for reviewing functional requirements specifications; for environments that
uniformly use Structured Analysis to generate specifications, the Requirements
Specification Inspection would undoubtedly supercede the Preliminary Design
Inspection in importance.

Experience in performing Inspections is cumulative and if applied can have an
effect on the Inspections process. Over the first two years on the SWTS project,
the error rates were widely scattered. In the second year, an examination of the
Inspections process resulted in changes in error definition, Inspections procedures,
and staff education. Consequently error rates dropped significantly and today
remain in a much smaller range.

CONCLUSION -
Inspections are not a panacea for Quality Assurance defect removal. They are
technical review procedures and may not be appropriate for some situations such

G. Wenneson
Informatics General Corp
7 of 22

as those needing heavy user interaction (such as user interface definition). They
should be used in conjunction with (but probably not as a substitute for) military
PDR/CDR large reviews. In appropriate situations, they have been proven to be
effective and efficient error detection methods which have extremely important
and beneficial "side effects" of accurate planning, scheduling, and tracking for
project management and control. The primary effect of Inspections is to move
error detection and correction to the earlier (and less costly) development stages. As
such, this front-loads the project schedule, but the time is more than recovered
during the coding and implementation phases. Consequently, Inspections usage on a
project requires proper education, scheduling, and implementation and should not
be used on schedule driven projects where the customer understands only two
development phases: code and test.

At NASA Ames, based on experience gained using the original IBM model on pilot
projects, Inspections have been modified and specialized for numerous projects,
development phases, and environments. At Ames, Inspections are expected to play
an increasingly major role as a Quality Assurance tool in software development.
Some of the directions this can be expected to take are expansion to cover new
software languages, incorporation of mnew structured development methodologies,
and modification of the methodologies for the Ames environment based on
information gained during Inspections of software developed wusing those
methodologies. Inspections are a significant Quality Assurance tool in their own
right and flexible enough to be integrated and implemented with other tools,
especially defect prevention, to provide a comprehensive Quality Assurance
environment to approach zero defect products.

REFERENCES

1. M.E.Fagan, "Design and Code Inspections to Reduce Errors in Program
Development”, IBM Systems Journal, Vol.15 No.3, 1976
(This article can be ordered as a reprint, order no. G321-5033)

2. "Inspections in Application Development - Introduction and Implementation
Guidelines", Installation Management Manual GC20-2000-0, IBM Corporation,
1977

3. "Guidelines for Software Inspections”, NASA Contractor Report 166521, August
1983, NASA Ames Research Center, Moffett Field, Calif. 94035

G. Wenneson
Informatics General Corp
8 of 22

THE VIEWGRAPH MATERIALS
for the

G. WENNESON PRESENTATION FOLLOW

G. Wenneson
Informatics General Corp
9 of 22

SOFTWARE INSPECTIONS AT NASA AMES

METRICS FOR
FEEDBACK
AND

MODIFICATION

GREG WENNESON

INFORMATICS GENERAL CORPORATION

G. Wenneson
Informatics General Corp
10 of 22

WHAT THEY ARE (AND ARE NOT)

INSPECTIONS :

FORMAL REVIEW PROCEDURES

FOR ERROR DETECTION ONLY

DEFINED TEAM MEMBER ROLES

SPECIFICALLY DEFINED TOOLS

HELD AT SELECTED POINTS IN DEVELOPMENT CYCLE
DEFINED INPUT ‘

DEFINED OUTPUT

INSPECTIONS ARE NOT :

DESIGN SESSIONS
WALKTHROUGHS
EVALUATIONS OF THE AUTHOR
RUBBER STAMP PROCEDURES

G. Wenneson
Informatics General Corp
11 of 22

HISTORY

AT IBM
MIKE FAGIN, PUBLISHED - 1976
ALSO - O.R.KOHLI, R.R.LARSON, R.A.RADICE
FORMAL GUIDELINES - 1977, 1978
PRODUCTIVITY GAIN 23%
ERROR DETECTION 82%
ERROR REDUCTION 38%

AT NASA AMES

PILOT PROJECTS BY INFORMATICS - 1979
(ALSO COMMERCIAL PILOT PROJECTS)
STANDARDIZED WIND TUNNEL SYSTEM (SWTS)
PRODUCTIVITY GAIN 40%"
ERROR DETECTION 90%"
ERROR REDUCTION 40%"
(* - INCLUDES MAJOR METHODOLOGY CHANGES)

NOW USED ON MOST INFORMATICS AMES PROJECTS

G. Wenneson
Informatics General Corp
12 of 22

INSPECTION COMPONENTS

DEFINED TOOLS
STANDARDS
CRITERIA FOR MATERIALS PREPARATION
CHECKLISTS FOR ERRORS
EXIT CRITERIA
WRITTEN RECORDS AND STATISTICS

TEAM MEMBERS
MODERATOR
READER
INSPECTORS
AUTHOR

INSPECTION PROCESS
TEAM SELECTION (PLANNING)
OVERVIEW
PREPARATION
INSPECTIONS SESSIONS DESK INSPECTION
REWORK
FOLLOW-UP

G. Wenneson
Informatics General Corp
13 of 22

PROBLEM AND STATISTICS RECORDING

PROBLEM RECORDING
MODULE INSPECTION PROBLEM REPORT
"GENERAL" PROBLEMS REPORT

PROBLEM STATISTICS
MODULE PROBLEM SUMMARY
MODULE TIME AND DISPOSITION REPORT

INSPECTION STATISTICS
INSPECTOR TIME REPORT
INSPECTION GENERAL SUMMARY
OUTLINE OF REWORK SCHEDULE

G. Wenneson
Informatics General Corp
14 of 22

INSPECTIONS DATA BASE FOR SWTS
- SUMMARIES -

SUMMARY OF INFORMATICS SWTS PROJECT INSPECTIONS STATISTICS

Type Total Total No DENSITY-OF-PROBLEMS TIME-PER-PERSON
of Number "Lines" Per Thousand Lines Per Thousand Lines
Inspect’n Lang. Held Inspected Major Minor Total Meet’g Prep’n Total

CODE - ALL Lang 94 51186 22.0 59.9 81.9 4.6 40 8.7
NON-DESK
Only FORTRAN 90 49389 22.4 60.4 82.8 4.6 4.1 8.7
ASSEMBLY 4 1797 10.1 44.5 54.6 5.0 26 1.7
CODE - ALL Lang 47 23206 21.0 513 723 39 00 39
DESK
FORTRAN 43 21308 19.1 48.1 67.2 37 00 37
ASSEMBLY 4 1898 42.6 87.6 1303 6.3 0.0 63
DETAILED
DESIGN ALL Lang 44 10349 76.74 1446 2213 14.5 9.8 243
FORTRAN 40 9205 83.1 1434 2265 14.5 9.2 237

ASSEMBLY 4 1144 253 1539 179.2 14.3 144 287

PRELIMINARY
DESIGN ALL Lang 43 13268 68.1 1075 175.7 10.8 54 16.1
FORTRAN 41 12570 543 89.8 144.1 9.1 55 146

ASSEMBLY 2 698 3166 4268 7434 39.8 3.7 436

This chart summarizes the statistics from Informatics inspections on the
NASA Ames SWTS project. The statistics are weighted averages, each
inspection being weighted by its size, in lines of design or code.

G. Wenneson
Informatics General Corp
15 of 22

STATISTICS USE

AUTHOR

PROBLEM REPORTS
MODULE PROBLEM SUMMARY
PREVIOUS INSPECTION STATISTICS

DESIGN TEAM AND MANAGER

PROBLEM REPORTS

MODULE PROBLEM SUMMARY
OUTLINE OF REWORK SCHEDULE
MODULE TIME AND DISPOSITION
INSPECTION GENERAL SUMMARY
PREVIOUS INSPECTION STATISTICS

PROJECT MANAGER; TEST GROUP; QA GROUP

MODULE PROBLEM SUMMARY
INSPECTION GENERAL SUMMARY
PREVIOUS INSPECTION STATISTICS

SOFTWARE ENGINEERING

MODULE PROBLEM SUMMARY
INSPECTION GENERAL SUMMARY
PREVIOUS INSPECTION STATISTICS

G. Wenneson
Informatics General Corp
16 of 22

CODE INSPECTION SUMMARIES
NEW FORTRAN CODE, MODIFICATIONS, AND BOTH

SUMMARY OF INFORMATICS SWTS PROJECT INSPECTIONS STATISTICS

Type Total Total No DENSITY-OF-PROBLEMS TIME-PER-PERSON
of Number "Lines" Per Thousand Lines Per Thousand Lines
Inspect’n Lang. Held Inspected Major Minor Total Meet’g Prep’n Total

CODE - NON-DESK CHECK

FORTRAN 90 49389 224 60.4 82.8 4.6 4.1 8.7
/New 46 25981 26.3 68.3 94.6 5.5 49 103
/Mods 13 7019 17.2 42.4 59.6 3.0 3.2 6.2
/Both 31 16389 18.5 35.6 74.1 3.9 33 1.2

CODE - DESK CHECK

FORTRAN 43 21308 19.1 48.1 67.2 3.7 0.0 3.7
/New 8 4121 26.3 51.7 78.0 4.9 0.0 4.9
/Both 25 14453 18.6 50.1 68.7 34 0.0 34
/Mods 10 2734 10.6 322 42.8 3.8 0.0 3.8

This chart summarizes the statistics from Informatics inspections on the
NASA Ames SWTS projcct. The statistics are weighted averages, each
inspection being weighted by its size, in lines of design or code.

G. Wenneson
Informatics General Corp
17 of 22

"MAJOR" PROBLEM DISTRIBUTION, BY PERCENT

INSPECTIONS DATA BASE

PRELIMINARY DESIGN

Category FORTRAN ASSEMBLER
13%

SPECIFICATION
CLARIFICATION
DATA

LOGIC

1/F

LINKAGES
PERFORMANCE

DETAILED DESIGN

CODE

DETAIL

LOGIC

DATA
LINKAGES
RETURN CODES

FUNCTIONALITY
DATA

CONTROL
LINKAGES
READABILITY
REG. USE

10%
17
18
21

5
20

4

29
20
22

5

9
19
18
24
17

1
21
21
20

3

29
66

37
22
23

12

G. Wenneson
Informatics General Corp
18 of 22

PREVIOUS INSPECTIONS EFFECT ON MAJOR ERROR RATES

STAGE OF
DEVELOPMENT

CODE NON-DESK
CODE DESK
DETAIL DESIGN

PRELIM. DESIGN

NUMBER OF PREVIOUS INSPECTIONS

0 1 2 3
17.7 30 32.6 38
15.1 27 30 21
95 79 54 -
58 45.6 - -

Major Errors Per KLOC

AND ON PREPARATION AND MEETING TIME

STAGE OF
DEVELOPMENT

CODE NON-DESK

CODE DESK
DETAIL DESIGN

PRELIM. DESIGN

NUMBER OF PREVIOUS INSPECTIONS

0 1 2 3
8.2 9.2 9.1 10
4 32 35 2.5
27.7 23.0 - 9.5 .
14.7 14.4 - .

HOURS of Preparation plus Meeting time Per KLOC

G. Wenneson
Informatics General Corp
19 of 22

INSPECTIONS RATE AND PREPARATION TIME RELATIONSHIP

An important area of consideration is the amount of preparation time
required in order to aollow the participants to proceed at a reasonable
rate in the inspection meeting. The graph below, based on the individual
inspections to date, suggests that preparation times of 4-7 hours per 1,000
lines may allow the team to proceed at an optimum rate in the meetings.
Less preparation time will cause the meeting to slow down because of
poor understanding oand many questions. More preparation time may have
a negative impact on the rate because of over-emphasizing minor problems
or discussing the functionality or goals during code or design inspections.

UPPER AND LOWER RANGES OF RATES ACHIEVED
IN INSPECTIONS WITH VARIOUS
PREPARATION TIMES

Inspection
Rate J
(Lines
per
hour) 3004
2004
~‘--
1004 ceccacnce. T Code
<FDetailed Design

Preparation Time
(Hours Per Person Per Thousand Lines)

G. Wenneson
Informatics General Corp
20 of 22

INSPECTIONS AS A PROJECT COORDINATION TOOL

INSPECTIONS CAN INTEGRATE THE FOUR MAJOR PROJECT FACTORS:
PROJECT MANAGEMENT
METHODOLOGY
QUALITY ASSURANCE

STAFF PERFORMANCE
THRU:

REINFORCEMENT OF METHODOLOGY AND STANDARDS

MAJOR MILESTONE TRACKING INFORMATION MATCHING WBS

DETAILED TRACKING AND ESTIMATING INFORMATION MATCHING WBS

DETAILED ERROR AND DESIGN NEEDS AT EACH DEVELOPMENT STAGE

EASY EXTRACTION OF TECHNICAL INFORMATION ABOUT COMPONENTS

INDICATIONS OF TRAINING AREAS NEEDING ATTENTION ACROSS THE
PROJECT

INDICATIONS DIRECTLY TO INDIVIDUAL STAFF MEMBERS OF THEIR
TRAINING NEEDS

G. Wenneson
Informatics General Corp
21 of 22

ALMOST THE END

CAUTIONS

DOESN’T SUBSTITUTE FOR THINKING

MUST BE SCHEDULED AT BEGINNING - CAN’T BE "TACKED" ON

PARTICIPANTS MUST BE PROPERLY TRAINED

NEED CUSTOMER UNDERSTANDING AND SUPPORT

MANAGEMENT DIRECTION AND SUPPORT CRUCIAL

STATISTICS ARE FOR BETTER SOFTWARE AND MANAGEMENT,
NOT A NUMBERS EXERCISE

WHERE TO GO FROM HERE

EXPAND TO NEW LANGUAGES AND DESIGN TECHNIQUES
EXPAND TO NEW METHODOLOGIES AND SUPPORT TOOLS
FEEDBACK TO CURRENT METHODOLOGIES

EXPAND TO OTHER APPLICABLE COMPANY/CONTRACT AREAS

G. Wenneson
Informatics General Corp
22 of 22

N86- 30364

PANEL #3
SOFTWARE ENVIRONMENTS

C. Gill, Boeing Computer Services
A. Reedy, Planning Research Corporation
L. Baker, TRW Defense Systems Group

A KNOWL_EDGE BABED SDOFTHARE
ENGINEERIME ENVIRONMENT TESTEED

Chris Gill
Bozing Computsr Services

The Carnegig Group Incorporate
(CGI) and the Boeing Computer
Eervices Company (BCS! are
Jointly developing = knowledge
based sottware enginsering
environment testbed. Thz goal
of this multi-year experiment is
to demonstrate dramatic
improvements in software
productivity by applying
Artificial Intelligence (RI)
technigues to the software
development process. The
rasultant environment will
provide a framework in which
conventional software
enginssring tools can be
integrated with AI based tocls
to promote software development
auvtomation.

The objsctives of the tsstbhed
are:

o to demonstrate the integratien
of multiple techniguess for a
system that improves both the
saoftuware development process
and the guality of the
softwsre being developeds

o to determine, through
experimentaticon, the benefits
that may result from AI
technology;

o to sgvaluates asltarnative
functional implementationsg
and

o to provide a preliminary
development facility for
building advanced software
toolis.

The primary emphasis of the
testbed is on the transfer of
relevant Al technology to the

software development procsss.
The primary sxperimentz relate
to Al issues, such as scaling
up, inference, and knowledge
representation.

The approach being used is two—
fold:

o te explore the usz of AT tools
and technigues for a scftwars
sngineering environment
framework; and

o to explore the uss of Al tools
and technigques for specific
saftware engineering tools.

The environment will provide
functicnality for Froject
Management, Software Development
Support and Configuraticn/Change
Management throuvghout ths
softuware lifecycle. For
purposes of the sxperiments, the
develcpment environment is
considered to have thres
dimensions: the functional areas
mentioned asbove, the lifs cycle
phases, and a dimension of
potential Al techniques. These
potential tschniguss can be
grouped into thres major
categories:

o knowledge representation,
which deals with modeling
software project concepts and

links;

o inference mechanisms, which
tdexl with the ways this
knowledge ctan be used to seolve
user development problams; and

o knowledge based interface,
which desls with intelligent
display, explanation, and
interaction with the ussr.

Figure 1 illustratzss ths three
dimensions of the experimsnt.

C. Gill
Boeing Computer Service
1 of 10

Status

We have procesded in
first manner,

&

performing

euperiments in each cell of the

matrix

in Figure 1 rather than

conczntrating on any particular

ca2ll During

the first year of

the ﬁraject CEI has:

O

created a model of software
development by representing
softwareg activities;

developed a module
representation formalism to
specify the bshavior and
structure of softwars objiects;

integrated the model with the
formalism to identify shared
repressntation and inheritance
mechanisms

demonstrated chiject
programming by writing
procedures and spolying them
to spftware chiscte {=.g..
propagating changes in a
development systaml;

uzed data—dirscted re
to infer thez probables
bugs
repor

SSONing
cause of
y interprating problem

4
C55

.

11

iy
1§]

rEsasaon

a softmars

F1

completing experiments
remaining cells of the
matrix

ans for the next phass includs
in the
Figure 1
along with soms=

additional g=neral AI

xperiments, including:

uses of knowledge bassd
simulations to perform rapid
prototyping or to try
alternative proisct schedul

usz2 of a blackboard
architecture to permit
"experts" to confer with

other to soclve problems;

each
and

uss of distributed processsing
that would permit separatse

systems to sct upon goals sent
to them by others.
@é
c\\‘\\ / Knowledge-8ssed Interface
<€
»
Inferance Mechenisms / »
X dge Repr { /

) W il /
uml Analysis Task P] -_‘ » o
@ aid
<
z n v vin /
“ P] Froatem
é Oesign l:::omco 'l-a—mn' .ro.'l-n- euigh Trachiog
Q
w] vi]
-
- ’"'"m.“.. .L“'“.'.‘ o Change

Productian chedule Trecking, Coding and Mansgement
rogress Reporting) Reussbility
st . ooy Uanagement
Sugpert

AREAS OF EFFORT

FIGURE 1: ENVIRONMENT FUNCTIONALITY

C. Gill
Boeing Computer Service
2 of 10

THE VIEWGRAPH MATERIALS
for the

C. GILL PRESENTATION FOLLOW

C. Gill
Boeing Computer Service
3 of 10

Kuedwon butaog ay)l 5861 1yblAdod

saJIAI9S 193ndw o) bulsog

1O SHYD

dOHSHYOM SNIYIINIDONT FYVMLIOS TVNANNV HINIL
VSVN

01 UOnLIUISIIJ

d38.1531
INIFWNOUYIANT DNIHIINIONT FHVMLII0S

aisva-ivaiiMONI v

131ud) UG [EPHUY
$321A495 Jaindwo) buaog

/

Boeing Computer Service

C. Gill
4 of 10

papasu uoneudawIadxa U0 -
9)9|dwod 1edhisii4 -
paloid seaAnyniy o

Boeing Computer Service

C. Gill
5 of 10

190 -

So9 -
9JNIUBA JUIOf e

s|joo} jo uoneibayu| -
buiisauibug asemyjos o3 pardde |y -
sjudwiadxa Jo so1las e

palelisuowap uda(jou sey asiwoid -
asiwoad sMmoys | -
Auanpnpoud aisemyjos ui suieb abie| pasaN e

b
UOIIINPOIU] “iomise b -‘
] ®

uonejuawiadxa 104 pagisal dojanaqg e
Ayjenb aiemyjos uj Jusawanoidull ajessuowsq e
ss330.d Jusawdo|aAap 31eM}40S Ul JuswdAosdwi dlessuowaqg e

buiiaauibug asemyjos 03 paljdde |y 0 S31jaudq dUIWLLIBIDQ *

\. 1931u) 9duabijul [ePRIY
m> s“.um Qo sa>1n195 Jandwo) bulsog
[] !)

/

Boeing Computer Service

C. Gill
6 of 10

NI
A\

140443 40 SVIHVv

juawabeuep yioddng
abueyd jwawdojpAdag wawabeuey
Juoneinbiyuod 91BM}OS afoig
Ajiqesnay bunoday h
pue buipo) pue ‘Bunpes|
juawabeuepy | 1uapuadapuy | ‘lusawainseay | uoidNpold
abueyd -abenbue dULWI0}Idd
Xl IN Hi
Buppes| abenbueq Buinpayds
voday ubisag pue Buruueld ubisaq Y SISVHd
wajqold wetbouiyg 331n0saY 31OAD 341
A A Il
SPIV
buiuueld uoinedynads
uoneinbiyuoy | uswalinbay | buiuueld ysey siskeuy
[IA Al I J

uoneluasalday abpajmou)y

SWISIURYIB|A 9dUIB}U|

3Je4191u| paseg-abpajmouy

\

SINDINHIALIV

\

yseosddy

131ua) DUIBIjRIUY jeRIIY
sarin1as Jaindwo) buisog

Boeing Computer Service

C. Gill
7 of 10

so1ydelb paseq-abpajmou) e
Buiuoseau pajiralip-jeon e
Buiuoseau payalip-eieqg e

Buiwwesbo.id 18lqO e

wisijew.o} uoeyudsaidal 3|npo e

191U3) U] jePHINY
M : “ m._w.m sadIAlas J1aindwo) buiaog

Boeing Computer Service

C. Gill
8 of 10

Buissaco.d paynqusig e

2in31331ydJe pieogypde|g

ddejlaiul abenbue| jeinjeN e

uone|nwis paseq-abpajmou) e

sueld

131Uud) 8duabyysu] jePIY
s9d1A195 19indwo) Buiaog

4

mputer Service

C. Gill
Boeing Co
9 of 10

syd>afoid [eas uo asn 01 paaN e

uoneibajul jo obeiana e

asiwoud snopuswiai] e

B
SUOISN[OUOD “imimmentilin

/

Boeing Computer Service

C. Gill
10 of 10

N86-30365
Experience with a Software Englneering Environment Framework

by
R. Blumberg, A. Reedy, and E. Yodis
Planning Research Corporation

1.0 Introduction

This paper describes PRC's experience to date with a software englneering
env Ironment framework tool called the Autgmated Product Control
Environment (APCE). The paper presents the goals of the framework
design, an overview of the major functions and features of the framework,
a summary of APCE use to date, and the results and |essons |earned from
the Implementation and use of the framework. Conclusions are drawn from
these results and the framework approach is briefly compared to other
software development environment approaches.

2.0 Franework Goals

The APCE was developed to reduce software |ifecycle costs. The approach
taken was to Increase automation of the software |ifecycle process and
thereby to Increase productivity. It was felt that maximum cost
reduction could be achieved for the short term by attacking three major
problem areas:

o automation of labor Intensive but routine administrative tasks

0 provision of an overall control, coordination, and enforcement
framework and Information repository for existing tools

o provision for maximum framework portabil ity, distributability,
and data Interoperabil ity with the bounds of performance constraints

A distinction was made between tools and the enviromment. In the PRC
view, tools are active elements In the software | Ifecycle process. They
create or modify (document or software) components, test components, or
order the execution of groups of tools upon components. The enviromment
or framework, on the other hand, Is a more passive element. It provides
for overall control, coordination, and enforcement and acts as an
Information repository. This distinction Is Important because it serves
to separate enviromnment or framework issues from tool issues. PRC wanted
to build a framework which could Incorporate existing tools. In this
way, PRC could bulld on the excellent work done by others in the tool
arena In a timely fashion.

A Reedy
Planning Research Corp
10f25

) ”;)c"‘ e m T
R BP ot g 417“

B

3.0 APCE Overvliew
The APCE provlides automation for:
o real-time project status tracking and reporting

o configuration management of software, documentation, and test
procedures

o requirements traceabil ity and change Iimpact traceabil ity

o test bed generation, component Integration, and system
integration

A brief overview of how the APCE Is organized to support these functlons
and how the APCE is designed to support portabil ity, distributablil ity,
and interoperabil ity Is given below.

3.1 Automation and Control

As suggested by Stoneman [1], a database provides the Integrating
mechanism for the environment framework. The database design
Incorporates a flexible model of the software development process.
Project definition Information based on this model Is entered Into the
database during project initlial ization, and this Information [s used to
control the project and provide the basis for automated tracking and
conf iguration management. The project definition Is divided Into three
components as |llustrated in Slide 3 (APCE Entities).

User groups are ldentified as managers, developers (those who create
products), or testers; multiple roles are allowed. The organizational
hierarchy is also described so that project problem reports can be
automatical ly forwarded up the chaln of command If they are not promptly
dealt with. Products, both documents and software, are descrlbed

In terms of thelr component structure and are assoclated with sofiware

| Ifecycle phases which are also entered into the APCE database. Slide 4
(APCE - DOD Documentation and Review Sequence) 1llustrates the |Ifecycle
phases as specified in Mi{-Std 2167.

The levels of integration describe the hierarchy of the test and
integration processes that all products (documents or software) must go
through. This testing process allows for the enforcement of project
standards and qual ity assurance. The APCE uses the product structure and
test procedures developed by the testers to automatically create testing
basel ines and test harnesses as required.

A Reedy
Planning Research Corp
20f25

3.2 Portability, Distributability, and Interoperabll ity

The APCE approach to support for portability, distributabil ity, and
interoperabil ity is based on three architectural features:

o APCE Interface Set (AlS)
o data-coupled design
o open system architecture

These features are [llustrated In Figure 1 (APCE Static View), which
shows the APCE as part of a Software Englneering Enviromment (SEE).

The APCE subsystems and data management capabilities depend on a standard
set of interfaces to system services called the AIS. These Interfaces
define a Stoneman Kernal Ada® Programming Support EnvIiromment (KAPSE) |ike
layer for portabll ity purposes. The AIS allows a mapping to existing
operating system services. |f the needed level of support Is not

directly avallable from the host operating system, then an extra layer

of software Is created to satisfy the requirement. Existing operating
system services are not duplicated. The AIS Is not based on an Implicit
mode! |ike the Common APSE Interface Set (CAIS) [2].

The data~coupled design provides for both control and distributabil ity.
All project information Is stored in the framework database. The
database controls the activities of the APCE functlional subsystems since
they do not Interface directly but interact through the database. Users
do not directly manipul ate the database; they affect the database
contents indirectly through interaction with the functional subsystems.
The database Is designed to minimize Information exchange, so data is
distributable (without replication). The functional subsystems are also
distributable since they are controlled by the database contents. The
database design Is controled by the framework and hidden from the users.
Thus, Integrity and Interoperabllity of data is ensured.

The open system architecture approach means that the APCE allows the use
of existing host tools, Including management schedul ing and costing
tools. The APCE does not interface directly with the tools but rather
controls tool invocation and the tool products. Both existing and future
tools can be used within the APCE framework without al tferations.

4.0 Results

The APCE has been used on a variety of In-house and client projects over
the past 21 months. |t has been used in-house at PRC to support
proposal and document production as well as software devel opment and

| Ifecycle malntenance projects. The framework has also been installed
for Army, Navy, and Alr Force clients. In one example client
Installation, APCE features were used to bring a software system under
conf iguration control for a Navy software support activity. The

A Reedy
Planning Research Corp
30f25

e = i
2

e 1 BT
i g
LI
Y, ¥
o ey 1
ey E LA
A C e

wu&% g

ORIGINAL PAGE IS
OF POOR QUALITY

ALL. METHOU

PROCS., TOOLS

SEE

HOST
O/S, DBMS, & COMMS.
S/W & HW

APCE INSTALLATION NO INTERFACE
== CAPABILITIES ACROSS THIS LINE

FIGURE 1. APCE STATIC VIEW

A Reedy
Planning Research Corp

C N 40f25

The full project team for Project 1 consisted of 9 persons, Including a
manager, 2 computer system sclentists, 1 system analyst, 1 apalyst, and 4
assoclate analyst/programmers. Two of the assoclate analyst/programmers
acted as the test team. All of the other team members, except the
manager, functioned as APCE developers. The senior staff members were
quite experienced with 10 to 15 years experlience each. The junior staff
members were all new college graduates with no commercial programming
experience and no VAX experlience. The APCE allowed all personnel to be

extremely productive despite their learning curve with a new machine and
a new environment.

4.2 Cost/Benef it Analysis

PRC has conducted a cost/beneflts analysis of APCE use for one of our
cllents. This client needed configuration management and |ifecycle
maintenance control for mission critical software. PRC developed plans
for both a manual and a APCE controlled development support facility and
plans for transitions to these facil ities. A estimation of both

the fransition costs and the annual recurring resource costs was
performed for both facilities. The results of the analysis are given on
Slides 6 (Level of Effort Analysis) and 7 (Cumul ative Cost Comparison).

The estimated times for transition to both the manual and the APCE
control led facll ities were the same (3 months). The activities involved
In the fransition period involve the establ ishment and implementation of
policlies and procedures and, In the case of the APCE controiled facil ity,
the Installation of software and training. As shown on Slide 6 (Level of
Effort Analysis), the cost for fransition In terms of effort was

sl ightly more for the APCE controlled facility. However, the total |abor

months required for the first year and following years were very much
less for the APCE controlled facll ities.

Slide 7 (Cumulative Cost Comparison) shows the total cumulative costs of
the two facll ities projected over a two year period. The larger initial
- costs for the APCE controlled facil ity Is caused by the APCE | icensing
fees. The cumulative costs of the manual facll ity surpass the costs of
the APCE controlled.facll ity after seven months (4 months after
transition). The cost savings achieved by the APCE facil Ity are due to
the Increased automation of the control, tracking, and configuration
management functions. The estimates did not include cost savings due to
Increased productivity of developers and testers.

4.3 Portablil ity

The framework has proven very easy to rehost. Part of this ease Is due
to the design features of the AIS and part Is due to rigid enforcement of
coding standards for the transportable portions of the APCE. To rehost
the APCE on a new machine, all that Is necessary Is to reimplement the
AlS functions. The APCE transportable subsystems have been written In C
using coding standards designed to el Iminate use of "non-standard"
features of the language. The C programming |anguage was orglnally

A Reedy
Planning Research Corp
5of25

framework Is now belng used to continue control throughout the
maintenance cycle, Including the Incorporation of module upgrades

suppl ied by other contractors. These various applications of the
framework have resulted In rehosting of the APCE to a varlety of
different hardware configurations. This experience In using the APCE has
allowed PRC to collect the data on productivity, transportability, and
distributabil ity presented below.

4.1 Productivity

At the National Security Industrial Association (NSIA) DOD/!Industry
Software Technology for Adaptable, Reliable Systems (STARS) Program
Conference in April 1984 [3, pg. L-21], the NSIA Industry Study Task
Group reported that the average productivity for U.S. software

devel opment projects was 200 |ines of code per |abor month. This works
out to a IIttle over 10 lines per day. On unclassifled projects with
APCE control, PRC has recorded productivity in excess of 120 |ines per
day. Slide 5 (Example Projects) glves the productivity flgures collected
for three PRC In-house projects under APCE control. (Cllent projects are
not far enough along to report meaningful productivity figures.)
Productivity In these three projects was an order of magnitude greater
that the average reported for Industry as a whole.

All of the reported projects used a high level programming |anguage
(HOL). Project 1 was the inltial development of a sofiware system. This
system has been malntalned under APCE control. The figures given for
Project 1 reflect only the developers'! labor and do not count time for
the manager or the testers (who basically functlioned as Qual Ity Assurance
personnel). Productivity during upgrades was equivalent or better than
that experienced during the Initlal development. Further detalls of
Project 1 are given below. Project 2 was an upgrade to an existing
system under APCE control. This upgrade iIncluded full documentation.
Project 3 was a prototyping activity, and Is somewhat atypical since only
partial documentation (e.g., no formal users manual) was produced. The
flgures given for Project 2 and Project 3 Include the testers' time.
These projects were small, so the same personnel functlioned as both

devel opers and testers.

Project 1 was a four month project to develop system software in the C
programming | anguage. The development host was a VAX 11/780 and the non-
APCE tools used are commerclally avallable for the VAX. The project
products Included: System Engineering Plan, Acceptance Test Plan,
Functional Description, Preliminary Design Specification, Detalled
Specification (22,000 Iines of Ada PDL), Operators Manual, and Users
Guide in addition to 58,297 iines of source code. In addition, 660 test
procedures were developed and used to test the components of the
products. (The test procedure development and test time is not included
In the productivity figures given for Project 1.) Same of these tfest

procedures were used to enforce the project speciflc coding and PDL
standards.

A Reedy
Planning Research Corp
6 0of 25

chosen because it was available on a wide range of host machines.
However, It has caused some problems because there are no standards for
C. In the process of transporting, some features of C that were assumed
to be commonly Implemented turned out to be system speciflic. A single
version of the transportable sofiware is maintalined that runs on all
supported machines. (Future plans call for conversion to Ada as soon as
there are Ada compilers on a sufficlently wide range of machines.)

The APCE is now running on the following machines: VAX 11/780 with VMS,
ROLM and Data General with A0S/VS, IBM with WS, and Intel 310 with

XENIX®, Siide 8 (Rehost Efforts) presents a summary of rehosting
experiences to date.

4.4 Distributabil ity and Interoperabll ity

The environment data is Interoperable because the framework controls the
database structure and because the framework controls only the products
of tools rather than interfacing directly with the tools. The toolsets
avallable on different hosts may differ, but equivalent functional ity Is
usually available. Filters and standard forms can be used to adjust for
differences between specific tools. For example, different editors
sometimes embbed control characters in the text. Filters are used at PRC
head quarters to move text among the VAX EDT edltor, the IBM PC Wordstar
editor, and the Macintosh MacWrite editor. A standard, plain text form

has been establ ished so that only one new filter needs to be written to
Introduce another editor.

Project data has been proven to be interoperable between different
framework installations. Software and documentation have been routinely
developed on one installation and then transferred together with
documentation, traceabil Ity and configuration management Information, and
project history information to a different Installation on different
hardware with no problems. This feature has proven useful in allowing
project work to proceed In parallel with the APCE rehost to new
hardware. That Is, the early phases of a project can begin under APCE
control on one machine while the APCE is rehosted to the desired
development host. When the rehost is complete, the project can be
transfered to Its own host.

The framework was designed to function in a distributed, heterogeneous
hardware environment. Both the database and the processing may be
distributed. Work currently underway will allow distribution of

devel oper processing to IBM PCs and Macintoshes connected to a VAX via a
local area network. Future plans call for full distribution of both
processing and data.

5.0 Concluslions

The prel iminary results presented above provide good evidence that the
APCE approach can achieve [ts goals. The framework Increases
productivity, allows use of existing tools without modification, and Is
easy to transport. PRC management has been Impressed enough to make the

A Reedy
Planning Research Corp
7 of 25

APCE a company standard. The task of technology Insertion into

large projects has begun. Because of its flexiblity, the APCE can be
Introduced Into existing projects without undue disruption. Most of the
transition problems are In the areas of training. The use of the APCE
does Involve understanding of some basic concepts. During the next few
years, more data will be collected on the benefits of using thls type of
environment framework.

The APCE framework approach Is In contrast with other enviromment
approaches both in the areas of goals and of benefits. Many other
recently developed environments, such as the Ada Language System (ALS)
L4], have a very different set of goals. One of the goals of the ALS Is
to provide a minimal set of transportable tools Including a retargetable
Ada compller. Much of the effort expended in the ALS devel opment has
been to develop tools, especially the Ada compliler. Many of the beneflits
expected from the ALS are the beneflts derived from the use of a standard
tool set and command | anguage.

The approach taken by the ALS does not allow the use of non-ALS tools.
To work with the ALS, existing tools must be rehosted to the ALS KAPSE
and rewritten In Ada, If necessary. The ALS tools are transported by
rehosting the ALS KAPSE on new hardware just as the APCE framework Is
transported by rehosting the AIS on a new operating system. The ALS
approach means that there wlll be signiflicant lead time before the ALS
has a reasonably full tool set. Further, features such as full

conf iguration management and project reporting must be added as tools to
the ALS. These important productivity tools are not part of the minimal
toolset. Important aspects of the ALS approach, such as productivity and
portabil ity, have yet to be proven. The problem of distribution was not
directly addressed In the flrst version of the ALS.

The ALS approach may work for organizations such as the U.S. Army that
wish to standardize as much as possible on a minimal tool set and a

|l imited selection of standard hardware. However, for a contractor with a
wide varlety of client and Internal standards, methodologles, and
hardware, a much more flexible approach is necessary. The APCE framework
Is an example of a viable alternative approach.

A Reedy
Planning Research Corp
8of25

References

[1] Requirements for Ada Programming Support Enviromments ("Stoneman"),
Department of Defense, February, 1980

[2] Proposed MIL-STD-CAIS,
Depariment of Defense, 31 January 1985

[3] Proceedings First DOD/Industry STARS Program Conference,
NSIA, 30 April - 2 May 1985, San Diego, CA

[4] Architectural Description of the Ada Language System (ALS),
Joint Service Software Engineering Environment (JSSEE) Report No.
JSSEE-ARCH-001, 3 December 1984

[5] Architectural Description of the Automated Product Control Environment,
Draft, 4 October 1985

Ada Is a reglstered trademark of the United States Government (Ada
Joint Program Offlice)

Xenix Is a reglstered trademark of Microsoft, Inc.

A Reedy
Planning Research Corp
90of25

THE VIEWGRAPH MATERIALS
for the

R. BLUMBERG PRESENTATION FOLLOW

A Reedy
Planning Research Corp
10 of 25

SIPOA '3
Apaay 'Y
Biaqunig 'Y

}iomawelq
juswiuoljaug Buasauibuz aiem)jos
e Yyiim
aouaadxy

Planning Research Corp

11 of 25

A Reedy

uoneibajul pue is9] - ND -
Buiyoes) - Buiodal 108[oid -

suonouUNd e
Allliqesadousiul ‘Ayjiqeinquisip ‘Alljiqenod -
uonewolny -
S|00} SA JUBWUOUIAUT -

S|eon) e

JUSWUOJIAUT |04IU0D }ONPOId palewoIny

Planning Research Corp

A Reedy
12 of 25

(sjenen
uojesbeju)
‘seseyd)

$3S$S3004d

(uopezjuebiso
‘uopjesjpuep] Jesn)

37d03d

(siusuodwo))
sS10naodd

saifiug 30dV

Planning Research Corp

13 0f 25

A Reedy

oud

OF POOR QUALITY

ORIGINAL PAGE IS

30.»0:

uoneoyioeds
91BMYOS o
mojaey
uBiseq
MBIAGH prn— WesAs o
eour1desdy e mejney moeney Mooy MmejAey
— ssouipBoY uBiseq uBiseq sjuewesnbey
UOHEDHHBND) BULIO] @ oL e 1InMO o Assupuyerd o S
upny
uvonsinBlyuon suewno0q sluswndog
{BoisAud uBiseg uBiseg
upny pejieieq Assujusjield
uoneanbyuo)
feuonound e
————EEGTEE
uopesBajui
pus je8)

wewdojersq
wAposg

wewdosasq

aouanbag mainey
pue uofjejuswndog dOqd - 30dV

Planning Research Corp

A Reedy
14 of 25

4
|

Planning Research Corp

15 of 25

Dby 2 052°0¢ pee € 108f01d
«Ohs Sl ¥20°cl 12 2 109[oad
WO 9 L6285 L2l 1 108oid

ebenbuel |, 0s10d je10) | DO 1B10L | ABP / D07 | 108l01d

Buiwwesboid

sj00loid 9jdwex3

A Reedy

oVd—

syjuow Jje1s ul pessasdxe sanjea ||y,

00've 00°09 jejol
00°Cl 000 uoddns 8)is - uo 304V
000 00¢clt 10}euUiIpi00)
000 00¢clt ueuelql] 1Sd
00’9 00’12 juswebeuew ise} / YO
009 00'S1 Juswabeuew uofjeinbyuo)
8)S092 994nosa4 Bulinsal jenuuy
Gc'6¢ 0095 lesah 1811 @101
00’81 00°'SY (21 01 p syuow)
§)}S09 821n0sa) Bulunoey
Sc'LL 00°LL SOl}IAl}o. uoljisuel} [BlO |
00°L 00°L juswdojanaq
GL'E 00'v Bunsel / vO
GL'¢C GL'E juswebeuew uoneinbyuon
GL'E G¢'¢ uoneziuebio
JUSWUOJIAUT JUSWUOIIAUT (€ 01 | syjuow) seniAnde uonisuell
30dV jenuep §)S09 824n0sal Jeak 18114

sisAjeuy M0} JO |8ADT

Planning Research Corp

16 of 25

A Reedy

syjuon 199foid

pzeccclcoc6L8LLLOLSLEPLELCLLLOLE6EBBLOSYEC
T T T T T 1]

1 ! I ¥ 1 I ! L l 1 1 I I ¥

0

-{ 000°00}
- 000002
- 000°'00€

syjuow / -1 000'00¢

Ajorewixoiddy | 490000
1e juiod uana eaig
< 000°009

-1 00000
-{ 000°008
- 000'00°'6
000'000°t $

uonejuawsaidwi| 30dV

—2Z 000 dAdLWw

uonejuswsjdwi| jenue

ORONGN o

uosiiedwod 1s02 sAlR|INWND

Planning Research Corp

17 of 25

A Reedy

1soy |euibuo SWA / XVA 810N

jauuosiad a}is g XIN3X
1shjeue 304y | | Sutuow e OLE I8MU]
sisAleue 30dV G | syuow %z | SAW /gl
s}sAjeue UON L SA / SOV
1sAjeue 30dV UIUOW | 54d - NTOH
9zIS wea] awll M/ H
Japuaje)

SHO0}}3 1SOYsYy

Planning Research Corp

18 of 25

A Reedy

1

Planning Research Corp

190f25

0
weiboid

8poy 801N0S

A10)s14 Juswdoleaeg

!

Aﬁﬂ

30dV SWA / XVA

'0juy j01U0D

Y

o) v
weiboid 100}

30dv SOV / '©D'Q

0
weiboiyg

jooy

30dV WEI

Auliqelod ® Ayjiqesedossiul 304V

A Reedy

1

Planning Research Corp

A Reedy
20 of 25

piepue}s 8}el0d.i09 e sk 8our}dadoy e
sjinsaJ AJeuiwijeid pooy e

S|00} BuisIXa JO asn SMO||V e
yoeouadde jusialjiq e

Alewwng

AdO1lvd0o8aVvi
ONIHIANIDNT FHVMIA0S

A Reedy

Planning Research Corp

21 of 25

(«821L)-OVd-006

S$S3004d LNINdOTIAIA
3FHL OLNI SFIODO0TONHO3L
TN4SSIIINS YIISNVHL (€

ADOTONHO3L DNILSIX3 FLVNIVAI (C

S$S3004d LNINdOTINIA
JUVYMIL4A0S F4NSVYIN (L -MOH e

S$S3704d LNINdOTINIA
JUYVMLI0S Sl IAOHdINI OL -AHM e

24S9D/VSVN Ag9 9/6L NI dIHSINgV1S3 -NIFHM e

AHOLYHOSVT
DNIY3INIDNT IHVYMLIO0S

Planning Research Corp

A Reedy
22 of 25

9Vd-006

S3INOVINHO3L
IN3INdOTIA3A
JUVYMIHA0S o
SAIDO0TOAOHLIN
ailvnivaa e
ONIAGNVLSHIANN
JYVYMI40S 431139 e

A\

isvg viva
aw 40 N

[

NN

ORIGINAL PAGE 1S

13S dHL 40 3HNLONYULS

IN3INdOTINIA FHVML4I0S
NO NOILVINHOINI e
JHVMI140S
SNOILLVYOITddV d0T73A3A e

&

4 ?O

SISATYNY 8 Sv3ai e
AGNVIAHVIA 40 "AINN

NOILD3HI0 YNSvl
INIWJOTIAIA 3YYML408

10NA0Hd JHVMLI0S

isva viva
3489

140ddNs
ONISS300Ud viva e
NOLLVOIdIHIA viva e

989

INIWIDVYNVYWN
433roud

»

ANIWNWIDVNVIN

.

Seamman

Planning Research Corp

A Rveedy
23 0f 25

Lo {#821)-DVd-006

08L/L1L-ddd

08Z/LL-XVA
(ATIdVINIYd) JINVHANIVIANL INgL 7"t "*"SHALNdINOD
SNOSH3d 8L OL 9" """ """""""""" "TT"" DNI4dV1S

(SNOILVY3dO 40 LHVIS
Ol NDIS3A 40 LYVLS INOoYd)
SHLINOW SC OL 9L """ """ mEEToREmAREeS 3T1NA3IHIS

(000°09L OL 000°2)
ool—m cccnmwa >l—l—<u—m>-—. ---------------------- Huw mN—w

JINILL-TVIH-HVIN

AALLOVHILNI

aisva-annoyd
U—m-hzm_um A m m s EEN®TERER HEw e EEw s ENwnS mm>h

(%SL) SOHIOVIN ,
(%S8) NVHLHOd " """ """ """ """" SIDVNONVI

SILLSIHI1LIOVHVHI LNIINdOTdNEd

A Reedy

Planning Research Corp

24 of 25

(«821)-DVd-006

S3211L9VHd NOILLYIIHIYIA ANV LS3L FHVMII0S —
NOILLVINILSE 1S0D FHVMLIOS O1L HOVOUddV NV —

IN3INdOT1IATA FHVMLA0S HO4d MOOdANVH S.HIDVNVIA —

IN3INdOT3A3Id
JYVYMLI0S 01 HOVOUddV AIAN3ININO0D3Y —

SH3dO0T3A3A A8 ISN
HOd4 S13AON ANV ‘SAYVANVLS ‘ST001L ANVIN a30NdOoUd e

S3190TONHI3L 14V-IJH1-40-31V1S 0§ LNoaV a3lanis e

a3LLINGNS SINYO4 000°0€ HINO —
d3aLvdidlLdVvd SHIdOTINAIA 00 HANO —

a3ionNaodd 3d09 40 SANIT NOITIIN ¢ 43N0 —
S173rodd 0§ NVHL FHOW INOYHd Viva ailoaTiod e

(G861 —LL6L)
SILLIAILDYVY 13S 40 3d0JS

A Reedy

Planning Research Corp

250f 25

N86-30366

One Approach for Evaluating

The Distributed Computing Design System (DCDS)*

- Extended Abstract -

Submitted to:

Tenth Annual Software Engineering Workshop
Scheduled for December 4, 1985

Missile Operations and Data Systems Directorate
Flight Dynamics Division
Goddard Space Flight Center

John T. Ellis

*This material was presented ;’;g 3;:?;5 is,:stems Group

by L. Baker of TRW Huntsville, Alabama 35805
(205)830-3326

SEPTEMBER 25, 1985
1. Ellis

TRW
1 of 24

w4 AN g 1A
Y . ARy

One Approach For Evaluating the Distributed Computing Design System

DCDS provides an integrated environment to support the life cycle
of developing real-time distributed computing systems. The primary
focus of DCDS is to significantly increase system reliability and
software development productivity, and to minimize schedule and
cost risk. DCDS consists of integrated methodologies, languages,
and tools to support the life cycle of developing distributed soft-
ware and systems. Smooth and well-defined transistions from phase
to phase, language.to language, and tool to tool provide a unique
and unified environment. An approach to evaluating DCDS highlights
its benefits.

1. OCDS OVERVIEW

Distributed solutions to complex systems require sophisticated tools and
techniques for the specification and development of distributed software. In
response to this need, TRW has developed the Distributed Computing Design
System (DCDS) to provide an integrated environment for the specification and
life-cycle development of software and systems, with an emphasis on the
development of real-time distributed software. The primary focus of DCDS is
to significantly increase system reliability and software development produc-
tivity, through the use of disciplined techniques and automated tools. To
minimize schedule and cost risk, DCDS offers management visibility into the
development process. The development of DCDS is sponsored by the Ballistic
Missile Defense Advanced Technology Center (BMDATC).

As illustrated in Figure 1, DCDS consists of integrated methodologies,
integrated languages, and an integrated tool set. Following the five methodo-
logies, the user can produce specifications for system requirements, software
requirements, distributed architectural designs, detailed module designs, and
tests. The five languages support the specific concepts for each of the
methodologies, and provide the medium for expressing the requirements,
designs, and tests. All five languages use the same constructs and syntax.
DCDS formal languages, as opposed to natural languages such as English, can be

used without ambiguity - all components of the language are explicitly
defined.
J. Ellis
TRW

2 of 24

ORIGINAL PAGE I8
OF POOR QUALITY

INTEGRATED INTEGRATED
METHODOLOGIES LANGUAGES INTEGRATED TOOL SET

SYSTEM $SL
REQUIREMENTS L e o
METHODOLOGY

© TRANSLATOR
o REPORT GENERATOR

o STATIC ANALYSIS

SYSTEM \ o FUNCTIONAL T
SOFTWARE / SIMULATION &
a's&umsuzm REQUIREMENTS hsL ANALYSIS
Y
NETomove o GRAPHICS useRs

r____\ f:o

SOFTWARE DISTRIBUTED

REQUIREMENTS I negign {

SPEC HODOLOGY

METHODO \ DL TSL

DESIGN MODULE
DOCUMENT DEVELOPMENT |
METHODOLOGY
o TRACEABILITY
BETWEEN DATA
LEGEND: oesion | TEST SAsES
5L~ SYSTEM SPECIFICATION LANGUAGE Doy B DOLOGY
RSL ~ REQUIREMENTS SPECIFICATION LANGUAGE "‘E“j
DDL - DISTRIBUTED DESIGN LANGUAGE
DL - MODULE DEVELOPMENT LANGUAGE 4 POCIENTS
TEL - TEST SUPPORT LANGUAGE OF HW IDENTIFICATION ¥
DS - DATA PROCESSING SUSSYSTEM Hw DEVT ors)

Figure 1. The DCDS Unified Environment

As shown in Figure 1, the user has access to a variety of tools to incre-
mentally define the specification contents, and to check them for completeness
and consistency. For each methodology, the tools maintain a data base to
store the specification contents. The data base maintains the specification
information in a support suitable for automated and thorough analysis. DCDS
tools can also support simulation and various types of analyses.

Data extraction tools are used to generate readable listings according to
user-defined formats. The listings can be used as working-level documen-
tation, briefing charts, or incorporated into formal specifications. The data
base from one methodology is used as a source to initialize the data bases in
downstream methodologies, permitting automated traceability between specifica-
tions.

J. Ellis
TRW
3 of 24

3.

THE FIVE DCDS METHODOLOGIES

System Requirements Engineering Methodology (SYSREM) for defining
and specifying system requirements, with an emphasis on the data
processing subsystem.

Software Requirements Engineering Methodology (SREM) for defining
system software requirements, with an emphasis on stimulus-
response behavior.,

Distributed Design Methodology (DOM) for developing a top-level
architectural design for the system software, including distributed
design, process design, and task design.

Module Development Methodology (MDM) for investigating and select-
ing algorithms, defining detailed design, and producing units of
tested code.

Test Support Methodology (TSM) for defining test plans and proce-

dures against requirements, producing an integrated tested system,
and recording test results.

THE FIVE DCDS LANGUAGES

System Specification Language (SSL) for specifying structured
sequences of functions to be performed by the system, inputs/out-
puts between functions, performance indices for functions, and
allocations of functions to subsystems.

Requirements Statement Language (RSL) for describing a stimulus-
response structure of inputs, outputs, processing, and perfor-
mance of a DP subsystem in a form which assures unambiguous
specifications of explicit, testable software requirements.

Distributed Design Language (DDL) for describing the distributed
hardware architectures of processing nodes and interconnections,
the software architecture, the allocation of processing and data
to nodes, and the communication topology. '

Module Development Language (MDL) for recording detailed designs
and algorithms considered and selected for the design.

Test Support Language (TSL) for recording tests, their relationship
to the requirements, test procedures, and test results.

Figure 2. DCDS Methodologies and Languages

J. Ellis
TRW
4 of 24

DCDS is used to produce units of tested software, and to identify the
data processing hardware. Tools are available to aid in the software pfocess
construction activities. The final output (Figure 1) from DCDS is the
integrated and tested Data Processing Subsystem.

The DCDS methodologies and languages are defined in Figure 2. Within
each methodology, individual steps are provided and are explicit and obser-
vable. Acitivites are defined and must be completed prior to each of the
major reviews duirng the development life cycle. Well-defined interfaces bet-
ween the life-cycle phases allow a unified approach for using DCDS. DCDS also
provides measurable intermediate milestones for management visibility between
the major review points.

DCDS provides a unique and proven capability. First, DCDS is the only
integrated environment which addresses the entire life cycle of distributed
software development. The techniques are independent of the implementation
language, and can be applied effectively to development activities or used as
a verification and validation tool. Second, DCDS concepts are based on proven
technology - the early results, oriented for software requirements, have been
validated, improved, and now extended to support the complete system develop-
ment life cycle. DCDS is the result of 12 years of research and development,
as discussed in IEEE COMPUTER magazine.*

2. DCDS EVALUATION

To gain a better perspective on DCDS and its characteristics, DCDS was
compared against three other commerically available products. These three
products provide methodologies and/or tools for developing specifications and
software. To allow an objective and multi-factored comparative evaluation of
the different methpdologies and tools, TRW prepared a list of evaluation cri-
teria partitioned into three classes: (1) factors lending credibility to the
product, (2) costs of acquiring and using the product, and (3) benefits of the
product.

*M. Alford, "SREM At the Age of Eight", IEEE COMPUTER, April 1985, pp. 36-46.

J. Ellis
TRW
5 of 24

The individual criteria from each of the three classes was assigned a
value weight of *high", *“medium", and "low". A score of “better",
“acceptable", or "deficient" was used to evaluate each product against each
evaluation criteria. An explanation of each evaluation criteria and the
rationale for each individual score against each product is available.

The results of the evaluation are summarized in Figure 3. Since the eva-
luation was not performed by an independent organization, the other three pro-
ducts shall remain nameless. However, they do represent well-known products.
A1l the products support an overall acceptable rating, and have been used suc-
cessfully in major applications. DCDS received an overall higher rating
within this evaluation process due to the following discriminating factors:

e Automated traceability across life-cycle phases

e Automated analysis tools
e Documentation support capabilities

o Relatively low cost to acquire and use the product

It is anticipated that the evaluation approach and criteria as outlined
in this report could be used by an independent agency for a more in-depth ana-
lysis and evaluation of various methodologies and tools. The author wishes to
acknowledge Mack Alford and Bob Loshbough of TRW for their extensive technical
contribution to the author's summation of DCDS and its evaluation.

J. Ellis
6 of 24

ORIGINAL pagr |g

R QUALITY
Pro-' Pro-|; Pro-
CENERAL CRE S PROPERTIES OF YALUE duct ductj duct
L CREDIBILI RS 00U PRODU T
|_GENERAL CREDIS TOOL___ PRODUCT wion_| ocos " ¥
@ MATURITY/VEMDOR SUPPORT X HIGH m% 3}‘“>E>w.. T IHIRE
o USER COMMUNITY X HIGH § {t 8 Al
@ BASIC CONCEPT/ASSUMPTION X X €D { ;‘25 'LE;;W“ m“i?“
{ 1 IS EKEARNE CRARRA ('
COST FACTORS
@ TOOL AND SUPPORTIVE Mu/SW X "ED PSS Y TERER
it L
@ LEARNING/TRAINING TIME AND COST | X MED AL ;gw(;%v};;
® OPERATING COST - BUILD, ! “?3}‘(
ANALYSIS DATA BASE X X HIGH QM“ gt
® OPERATING COST - DOCUMENTATION/ et ‘M}H
PRODUCT X ~ HIGH AR
BENEFIT FACTORS
o EXISTING METHOOOLOGY ' “eD Q |
© ALTERNATE COMPUTER HOSTS ;
AVAILABLE 3 HilcH ;; .
. !NTERP“ASE m.le" .’-.-..,"'.I...-.-". -‘-..-..’
(ms“- TEST) ‘ “lm 8 , 'y l’l-t) u’u'-.. -"‘AC.C"I--
6 DATA BASE CONCEPT X X LOW [(CRCCCLEL{(; (i
¢ AUTOMATED AMALYSIS X HIGH 8
® AUTOMATED DOCUMENTATION X HIGH 8 A (
® EASE OF MOOIFYING DOCUMENTATION | X x "ED ; {t
® AVAILABILITY X “ED ! ¢
® RESPONSIVENESS X MED il
® ERROR CLASSES IDENTIFIED BY t
TOOLS , X X HIGH 8
§ MANAGEMENT VISIBILITY X HigH PIIIASILIN
® OPERATING COST [MPACT X HIGH 8 ¥
® LABOR REQUIRED X MED 1134511140 133333
o COMPUTER TIME REQUIRED X LOW 8 8
|
PATTERN: | I BETTER (8) i ACCEPTABLE (A) DEFICIENT (D)
Figure 3. Evaluation Results
J. Ellis
TRW

7 of 24

THE VIEWGRAPH MATERIALS
for the

J. ELLIS PRESENTATION FOLLOW

J. Ellis
TRW
8 of 24

G861 12quada(P

(SadOq)
WALSAS NOISAA ONILNAIWOD dILNdI¥LSIA

JHL
ONILV(YTVAT HOd4d SFHOVOUddV

691-G8MY L

AiojeioqeT) ajjiasiungy
..P. . dnou9 SWAISAS
awn [

Buspeg MY L

J. Ellis

TRW

9 of 24

- W3LSAS NOISIQ DNLNAWOD 031NBIULSIA IHL -
S3I1D0TOAOHLIN
SIOVNONV
S7001

85-08-6934

140ddNS
FTOAD 34N

1500 GNV

wu Mwmv_ﬂwm ALIAILONAOHd
Q3ZINININ 1N3INdOT3A3d

3YYMLI0S
Q3SVIUONI

PNRRIAANEL
W3ILSAS
Q3AOHdIWI

Asoresoqen ajjisiuny
h.-”-hl“ W31SAS NBISIQ INILAJWOI 03LNAILLSIO FHL ,_Hw“mwmw

J. Ellis
10 of 24

(3002 40 SaNIT
000l "3d 193430 L 0L @30NA34 S10343d) ISYIHONI ALITVND ©

(LN3DH3d 007 OL LNIDOH3d 00Z) ISYIHONI ALIAILONAOHd @

S3SVHd 17V 404 AS0T0AQ0OHLIN d3LVHOILIN| e
NOILJ3130 HOHY3 IAISNIHIHANOD IHOW ANV A1HVYI -
SISFHLNAS ANV SISATVYNV NDIS3Q -

JOVNONVT LI0TdX3 ST00L d31LVINOLNY o

LNINIOVNVIN ANV
‘1S31 ‘NDIS3A 'SLNIWIHINDIH HO4 IDVNONV1 AILVHOILN| e

S3SVHd LNINdOT3IAIA 711V SSOHOV 13A0N A3LVHDILNI e
ADOTOQOHLIN NIAIHA-SLNINIHINDIH V NO A3ISve o

ADOTOJOHLIW Q3LVHOILNI NV HLIM
LNIWNOHIANT LNIWdOT3IAIA FHVMLA0S NOILVYHINID ANOD3ISY @

S3AILD3rdo
lhulhh At il
y 4 & | [4 ABsupg MY L

(1861) SIAILIIrA0 SAIA

J. Ellis
11 of 24

TRW

SNOILVOI4IJON S3SvI @

isvd
viva HOV3 NI SLNIN3T3 N3IML3IE 3T8VAIIHOV ALIT18VAOVHL 103Hid ®
NIAIHA SLNIWIHIND3Y @

ALl719v30oVHLl ONOYLS

W3LSAS NOILONYLSNOD SS3004Hd

430704 LN3INdOT3A3A LINN G3LVNOLNY

S3HNLONYLS SLHOAdNS ONILLOTd ANV SOIHdVHO JAILOVHILNI
(NOILVYLNIWNIO0Q SLHOddNS OSTV) WILSAS AHIND

H3ZATVNV ONIH3LSNTO

H3ZATVNY MO1d vivd

AHLIN3I SWHO4 JINOH.LO3T3

ONIMI3IHI SSAINILITINOI AONILSISNOD 3SVE vivd

W3LSAS NIAIHA-NNIW

140ddNS 7001 A31VINOLNY

SHOHYI WY3IH.LSNMOQ 40 NOILONA3Y NI 440AVd TV3H SIAIIHOV @
S3svse

V1vad WV3IHLSNMOQ 3LVILINI OL d3SN 3SVE V.LV(Q HOV3 JO NOILHOd ®

HOVOUHddVY 34NLONYLS AINITdIOSIa @

SISYHJIN3 SLNIWN3IHIND3Y A"V

ALITIGISIA LNIJWIOVNVIN

3INITdI0S10 a3aayv

SNH3IONOD 40 NOILVHVd3S

$3SvE V1Va NI SLONA0YHd 3HL 40 NOILV.LNIS3Hd3IH G3AOHJNI
SNOISI03A ANV Sd31S 40 FJON3INDIS JILVINILSAS

SL0NA0Yd ANV SS3004Hd IHL 40 ONIONVLSH3IANN 431138
S3190T10Q0H.LIN N3IMLIE SLHO443 40 NOILVHOILNI

2

$1v09 9NILHO4dNS SAJ0

Asojesoqen) ajjIasiungy
dnoio sSWasAs

U0 MY L

J. Ellis
TRW
12 of 24

@«
Q
™
[Ty}
©
[Te]
o
{Ty)
[2e]
MS
sasve
viva N33ami3sg
ALITIGVIOVHL ®
IsL

asprs

1A3A MH |
NOLLVOI4LLN3Ql MH da
S1N3IWNJ0Aa 4
$1531
ADOT0AOHLIN
140ddNS | 1NIWND0A
is3L NDIS3a
AD01I0A0HLIW
LINIWJOT3A30 LNIWNo0d
ERglefel’ NOIS3a
1an 4/ P
ADOTOQOHLIW
NOIS3a
a3Lngiyvisia

SISATVYNV JILVLS ®
HOLVHINID LHO43IY ©

._OV\
SOUHIVHO ®

SISATVNY
B NOILVINWIS
TYNOILONNI @

sy

HOLVISNVHL @

13S 1001 G31VHODILNI

JOVNONVYT LHOAdNS 1S3L ~ IS4
3OVNONVT LNINH0T3AIA 3TNAON — 1AW
JOVNONVT NDIS3A A31NB8IHLSIAO — 1aa

IOVNONVT NOLLYIIA133dS SINIWIHINDIYH — sH

JOVNONYT NOLLVOII41D3dS WILSAS — 1SS

03dS
SLN3IW3HIND3Y
IHVYMLA0S

~ ¢

A90T0QOHLINW
SIN3IW3HIND3YH

JUVMLA0S

X

‘ON3937

XVLNAS NOWRWOD

3AVH S3ODVAONVI TV

03dS

SLN3IW3HIND3H

W3ILSAS

$

A90T000OHLIN
A SINIWIHINDIY
ass W3LSAS
S3IODVNONVY1 S3IID0T0AO0HLI3N
A3aLVHOILNI a3aivHO3ALNI

INIWNOHIANT G31dIND SOJT

Asojesoqe] afjiasiungy
dnoic) SWaIsAg
asuBg MY 1L

J. Ellis
TRW
13 of 24

ORIGINAL PAGE IS

=
w §3
= LANESV..
o
- 1831 ONV $3Sv) Tl ONINNY 1531
NS worvuoILNI .
. 3
m 1d320¥ 1531 nsi
3002
‘ol JUYMOBYH
=4 awwwum 3dAL010Hd
=
o je-1S31 [&——NDISI0 [¢——N9ISI0
inn | aIuviaa AUYNINITI4d
= ONY [— N9ISI0
oo 3N0OW
318vSN3Y

§3,.0%
N9IS30.,

NOISI0 [€—~NIISIq XSVL

01010

$334S 18 1V
J3dsV

L1tk
JUYMLI0S

[]

JYYML 405
T ——

[~ — = ——

1 o awusasans |

1

awisasans |

1NINGOTIAI0 WILSASANS/WILSAS vwasasens |

_ WLSAS
HHS gi;é
E SLNINIHIND 1M
WLSAS

32..:5?___::._m_z;:._w:_;m_m__: :..S.n,:___zsz
.. . NOLN) SWaLs
......N..h 18044NS S31907000HLIW SO0 GILYYIILNI THL oo

ASUP3g MY L

J. Ellis
14 of 24

¢INFWNOHIANT/ADOTOAOHLIANW

JLVNTIVAd 1 Od MOH

Aiojesoqeny ajjiasiungy
anoio) SWasAg

..m.. asuajag MHL

15 of 24

TRW

J. Ellis

ORIGINAL PAGE IS

85-12-7675

(9) IN3ID1330 g

(v) 318v1d300V

==

(9) ¥3li13e

*NY3livd

OF POOR QUALITY

s R
g K M M g 8 "0l X 03UINDIY WIL YILNGWOD @
444 i L2988 811 S11LL iLEK o X 03YInb3y yosvY1 @
. g d 8 HOIH X 1OVAMI 1S0D ONILvy3do
“ Wi (E4SEMEEqisseiwieeq HOIM X ALITIQISIA INIMIOVNVE @
, V) KOO 8 8 HIIH X X $00L
“ I w w A8 Q3T41IN3QT SISSVTD WOWY3 o
" \ .w am X SSINIAISNOSIY @
_ 138 18ed m M a3 X ALITIGVIIVAY @
" W “) e X X | NOILVIN3WND0G ONTAJI00W 40 3SVI ®
. 1S e, g HOIH X NOTLVIN3WND0Q G3LVWOLOY @
! M W w........ 8 g HOIH X SISATYNY Q1VWOLNY @
_ AREOTT NN bsnss] Mo X X 143ON0D 35V VIVO #
1] a0 2 u. B &8 -
_”"““”s”.““,“.”‘“l“h“tg.”'".”lnl..-.: |3 . @ 5—: x >F—JNSM0WWPNW<ZM§NW .
ﬂm.n.“.".u § HOIH X 38VIVAY
T cantey SISOH YILNdWOD 3IVNYILTY @
410) PR 0 4001 m oM X A901000H13W INIISIX3 @
- s Q9 - 313 ~
SHOLOV4 1143N38
*,m, m W i HOIH X 19000bd
“ it /NOLLYINMND0Q - 1507 ONILV¥3d0 @
pihnh M) 8 HOIH X X ISVE VIVO SISATVNY
ARRRN RIS QN8 - 150D ONIIVYId0 @
itk | Q3N X | 150D ONV 3WIL ONINIVHL/ONINNV31 ©
BIH MZ NOI L1SINDDV
bl O X NS/MH 3ATLYO4ANS ONV 1001 ®
2T NN AR
SHOLOVH 150D
2 RARNANAR. 1AM
M m‘mm x"rammux am X X NOILAWNSSV/143IN0D JISVE ©
AAHE HOTH X ALINNWHOD ¥3SR @
MM ..“M ""“.J H9IH X 1404dNS YOON3A/ALIYALYW @
. A waus | saoq | LHOIM 1onaodd . 1001
a 3NTYA e E—— SHOLOV4 ALITIGIQ3YD TVHINID

HIVOUddY JALLYLITVNO

Aioresoqey r___BE:I

dnoJC) SWIdSAS
asu3jag MY L

J. Ellis
16 of 24

TRW

SA0Aa # %
W3aus *
e [oc|sc|oc|oc|8c|ir|8c|or] b |8e]8c] Iv]OF]Sc|8e]Sc]se]se 1
« Pelw|or| x| se| v se|ev | se|iv|iv|ev|ze|8e OV OF|GE T
8 Iz Tecloc|ol|cc|ec|2c|ce|ee|so|ec]eclec|oe]|ee|ee|ee]| Lo r
sz loc e | i valve|ve 9| vc | %2 | 92| |92 |81 | 12| 1c| 12| ¥ 1
sv | ov [v | & | av | vw | v | v | v ov]Sk v Sy (1| iv [ov oV v | . H
20 | v2 |92 | 1 | oz | ez | oz | ve | e |ec|ve| e |ve|oc|oc|ot| 61| ce 5)
gc | oc | 2v | 62 | OF | Tv |OF | OF | T |OF |6 | TP | OF | OF | OF | 6€ | 6€ | OF od
wlielosloilzcloclzz|1eloelzz|ieloelielse| 8| Lo L2 o a
8|16 2z |92 |82 |8z |oc|8|8c|8c|8c|oc|oc|oc|se|ss|se a
€0 |tz | €c | ot [tz | €2 |52 |92 | ¢ |€c|¢€c|¢€c|9c| 00| G|z es] T)
bl Lo |95 | <c | cc | oF |ec| e |oF |ec|zelov|2e|ve|2e|ve|ve] cE d
1z lcz ez ot oz |1cloc | v |iz|oc|aa|1c|velor|ol|1c]| 1|02 v
= = . == == BEC == = s==-s S
St|zi|or|ar|vi|er|zt|ntlot| 6| 8| 2|98 ﬂ.vdu_fwuﬂnmlh
ITdWIS TAHO9DILVYD IHYMLA0S ADOTOQOHLIW
R
AlojesoqeT] ajjiAsIuNgy
.. . dno10) SWRISAS
'TT, 7 S3dAL 133r04d I1dILTAW-IAILYLILNYNO 35U2430 MY L

J. Ellis
TRW
17 of 24

4
mwn
DB
SAdd # %
W3IHS *
2
2 L Lt Ll 1mjferloerletr}st|or|e6er|Lt]el]8I gr st fst{sly o6t 1
W gtrloz|st)ct]oryjer| ol 1izletjorjoz{et|1zc|s8r|8l]oOc 0c | 91 b, |
® 8 ol 8 L 4 8 It 8 il 41 glorimtyrtuyeriettet 8 r
€ Y € g S ¢ S | 4 rd S S rA 14 ¢ 1 I I Y |
el vz leolotjez|c|es)| €0 | TT|€T|¥C|ac go1co|16]0C | 0G| € P |
£ € |4 o € 1 £ ré 1 t e 1 ¢ 1 0 -] 1-] € 9
6t | 8L | 0G| ¥1 izler{1zlsr et {ic|s8r{ol(s8liy|lic gzt 6l 61} 12 wd
8 ol 8 | 4 8 8 8 6 8 8 | Ol 8 6 9 L L L 8 d
8 L 6 L 6 9 6 8 9 6 L 9 8 L 9 8 8 6 a
| 4 r 1 1 | 4 I | 2 L4 I | 4 A 1 L4 1 0 £ £ 2 O
ct lot lvr fOU [BT [QU [PL{STU|SBL{FI|OI grler|svztjvr | ¥l}] bl d
o I I 1 { I- I A I- 1 1 I-1 ¢ 0 I- i i 1 A\ 4
oryerpe gy —— rersrmpeer ey ey
ST Zrloilsr|vi et et t|or|o6 |8 2]9]]| *]|¢ “«u_ﬂml
WNIQ3W TAHODILVYD FHVYML40S AD0TOAQ0OHLIN
L L *
Ai0o)ei0qeT) AIASIUNK
..m . dnoic) swalsAg
aw G ey (QINNILNDI) S3dAL 1I3r0Ud 31411 INW-IAILVLILNYAD a5ua;20 MY L

SQOQ ##
W3Hs &..
s v]v]o]eJo]v]e]olr]e]r]ele]s]s]o0 T]
[v ele|e|e|i-|e|e|1-|e|1-]1-]|e]|0]0]e M
slir-1 6 [vi-| ti-] T ti- | t= [- | - [0= | 6= |- - | 8- | 2= | 2 | 2~ | 11- r
O1-| O1- | 61- | €1- | ¥1-| 02- | vi- | 81-| 02- | ¥1-| 91- | 0z- | 81-| 02- | 61-| 61- | 61- | ¥1- I
vlelele|rvlo|r|r1]lolv|eloltlelt]ololv]| -aH
ol-| 81- | 81- | Z1-| 91-| 12- | 91- | 0z~ | 12- | o1- | 81-| 12-| 0z- | 81- | 0z~ | 1z-| 12- | o1- 5
ol rlzlelzlvlielzlelelvls ol |1-12] =4
[T [Pl [T [T (o [T et | v [T (10 | vie | e1- | el | e1-] e1-] e1-] 11~ q
- | vi- [€1-| 8- | O1-| 91- | 01-] ¥1-| O1-] O1-| ¥1-| 01-| ¥1-| 21-| ¥1-| 21- | 21| OI- a
Q1= 61- | 12- | vI-| G1-| 12-| 51-| 81-] 13- | S1-| 61-] 12-| 81- | 81- | 02~ | 1-] L1-| SI-)
il sl lrlel sl vrlelsr|e|rle]o]e]s a
1i-] 06| Vo= | vi-| 81~ |z | 81-| 0c-| €2 | 81-| 06~ | €~ [0z 61-| 1z~ [61-| 61| &1 v
2?-2.:222:.: 6| 8|z |9 |al|v|ec|al|t]
JNIL-TVIH CAHODILVYD IHVYML40S ADSOTOAOHLIN
Asoieioge ajjiasiuny
.. . . dnoi9 SWISAg
P (QINNILNOJ) SIdAL 133r04d I1AILTNW-IALLYLIINYAD a5u2j20 MY L

J. Ellis

TRW

19 of 24

SAOa #¥#
wW3Hs %
ol 13- 92| Lo~ | 61-| 61-| S~ | 61-| 92-| S&-| 61-| ST-| G- | 9¢-| ¢¢-| ¢T-| G¢-| SC- | 6I- 1
mcm- 00~ | 9C- | 81-| 80~ | SC-| CC-| €0~ | G- CC-| TG~ | SC-| €0-) 0~ | &%~ | 0~ | 0C- | ¢o* p, |
w 0e-|0E-|9€<]9%-| 0c-| £e-| 0E-| €€-| €E-| 0E-| OE- | €€~ | €€~ | L&~ | L&~ | L&~ | Lo | OE- r
SE-| Le-| IP-|8C-| CC-| OFb-| €L~ | OF-| O¥-| €C-| LE-| CF-| OF-] 6L~] 6E- | 6E- | 6E- | €L~ |
SI-|8I1-| 61-{8I-|SI-{TC-|SI-| 1%-| 02| SI-|81-|CC-| 1g-| 91-| 61-| 02-| 0C-| SI- saH
Sg-| 68-| Ob-| G- | SE-| Eb-| G- | Ok~ | E¥-| SE-| 6| €¥-| C¥-| LE-| OF~| Tb-| T¥-| GE- J.rlnu
61-| ¥C-| ¥C- | OL-| LI-| GG | LY1-| 92-| ST~ | L1-| ¥T-| SC-| 9C-| L1-| 0C-| 1&-} 1| L1~ AN |
0L-| 0t~ | 92-| 92-| 0t-| 9¢-| 0L~ | SE-| 9¢-| 0t~ | G- | 9L~ | GE- | ¢L-| €€~ | £~ | £~ | Ot d
0£-1GE-| G- | €0-| 60-| 86~ | 60-| 9¢-| 86-| 62| Se-| 8L-| 9¢-| 1€~ | ¥e-| CE-| oL~ | 6T~ a
be-{ Ob-| €h-| 6C- | ¥E-| Eb-| ¥E-| O~ €b-| bE-| Ob- | €F-| OF~| LE-| OFb-| LE-| LE-| bE- D
£2-| 90| 08~ | 0%~ | ¥C- | 9T~ | ¥T-| 63~ | 90| ¥~ | 9C-| 98- | 6C- | £5-| €6~ | 90| 90~ | V&~ |
oc-| Ib-| €b-| 63| Le-|Sk-| Le-| -] S¥-| L&~ | Ub~]| ¥~ TV~ | BE-| 1¥-]| ot-] OC~ | L&~ A 4
ST L1|O1|ST|vr|ci|ct|an|ot| 6| 8| 2 9|9 |*|€|2]|T
Q3LVYUNVYIN ‘AHODILVYI FHVYMLIO0S A90T00QO0HLIW
————
Asojesoqe) ajjiasiuny
.. . . dnoin SWISAS
o w uSwanw (Q3NNILNOJ) S3dAL L33r0Ud I1dILTAW-IAILYLILNYND u2j20 MY L

J. Ellis
20 of 24

TRW

85-11-7589R

-

AA)F s

SHOYY3 Xli4

INIWNO0a +

AdIH3IA +
Xid +

SHOHH3 17V XId

LNIAND0A +
AdIHIN +
X4 +

-

S11NS3d LN3NNJ0A

AdIH3A

ST700L OLNI H3LN3
SIAILVNYHILTV JLVOILSIANI
d31S 0Q

AUNVLSH3IANN OL SONILI3INW

ANIOd 1HVLS Ol 31VISNVHL
T00L1/A0OHL3N NHV3T

d3ls
HOV3 "HO4d

1S03
= 1N3IWdO13A30A

SaJ0 INILYNTYAI 404 HIVOUddY TIQOW LS03

Ajojesoqe ajjiasiungy
dnoso) sWaSAS

BUIQ MY L

J. Ellis

TRW
21 of 24

$IJewr s

*
o
(e}
8 %08 %022 %00¢
& %02 %001 %002
o0
(205) %09 3021 2001
S of o
S %4 g
S 0l 04
S st St
(sa2q) NO! LY 14 143N QOHLIW
ST00L GILVWOLNY TWANYW ANV
ANY A90T0GOHLINW Q009

£ SNOLLVINDIVY IATdWNVX3

AN

SNOLLYTINITYI IT1dWYVS-TI00NW 1S0J

d3is
SHOYH3 XI4 HOV3 HOA
SHOHYI IV Xid
AININNDO0A + LNINWND0a +
AdIH3IA + AdIH3IA +
Xid + Xi4 +
SLINS3Y EINIWNDO0Qa
AdiH3A +
ST00L OLNI HIINT +
150D
SIAILYNHILTY ALVOILSIANI + = INIWJOT3IAIQ

d31S00 +
ONV1ISHIAGNN OL SONILIINW +

INIOd LHVIS OL JLVISNVHIL +
TO00L/GOHLINW NHVIT

T73AON 1S0D

Asojesoqen) ajjiasiungy
anoso) swidISAS

BUJIQ MY L

A05$ p YA A0¢S (XVAM) 1S02 1001)
+
M00/$ 0SS NITAS (A90710UOHLAW N¥V3T)
+
Wh*L$ Aonls Afl$ (#08) 809v1 SQoQ o
WO'h$ A00H$ H0hs (%0¢¢) NOLAVOIAI¥3IA VANVW 0009 @
Wh*s$ A0hSS Ahgs (500%2) TIVONYW @
SINIWIITAOIY vy
W8'L$ MO8L$ MSLS (%9°¢) SINIWIUINOIY TYNIWON
WOh$ WSS WS 0% 1S09
394V WNIG3W 1IVWS 4Z1$
AsojesoqeT] afjiasiungy
L L 3218 SNSYIA LS0I 1104 im0 M1

J. Ellis

TRW
23 of 24

HVINIT-NON 34V S1S0D 7001 ANV ONINHVIT e

1S00 S30NAa34d NOILVLININNOOA dILVNOLNVY @

SHOHYH3 ANV SLS0D S30NA3d NOILVIIdIH3A d31lvINOLNY e
SHOHHY3 S30NA3H NOILVIIdIH3INA @

SHOH4H3
/S1S0D 3SVHJH3ILNI 30NA34 ST001/SAOHLIN A31VHOIIN] @

HV310 34V SAN3HL 3INOS

NOILVNIVAI
1H0ddNS OL S1S0J 1HOIH 3HL NO Ld3X ONI38 LON SI1 vivd

(W3HL NO 03Sv8 SIHOVOHddV IAILVLILNYND 04110)

1S02 INIT NO1108 ,,1V3Y,,
JHL SSIHAAV 1,NOd STIHOVOHddY NOILVNIVAT FAILVLIIVND

Atojesoqe-] ajjy
AA)1 4 dhoug swaishs

swanCwaw SNOISNTINGD

aueg MY L

J. Ellis
24 of 24

TRW

N86-30367

PANEL #4
EXPERIMENTS WITH ADA
D. Roy, Century Computing Inc.

M. McClimens, Mitre Corporation
W. Agresti, Computer Sciences Corporation

SEL Workshop 86 paper

Daniel M Roy
Century Computing, Inc.

Abstract

A 1200 line Ada source code project simulating the
most basic functions of an operations control center
was developed for code 511. We selected George
Cherry’s Process Abstraction Methodology for Embedded
Large Applications (PAMELA) and DEC’s Ada Compilation
System (ACS) under VAX/VMS to build the software from
requirements to acceptance test. The system runs
faster than its FORTRAN implementation and was
produced on schedule and under budget with an overall
productivity in excess of 30 lines of Ada source code
per day.

Author current address:
Century Computing Incorporated,
8101 Sandy Spring Rd.
Laurel, Md. 20707
(301) 953 3330

Trademarks:
ALS is a trademark of Softech Corp.
Ada is a trademark of the Department of Defense.
PAMELA and PAM are trademarks of George W. Cherry.
ACS, VAX, VMS are trademarks of Digital Equipment Corp.
D. Roy

Century Computing, Inc.
1 of 41

SEL Workshop 86 paper
BACKGROUND

1 BACKGROUND

The Multi-satellite Operations Control Center branch (MSOCC), code
511, has embarked on an effort to improve productivity in the
development and maintenance of Operations Control Center (OCC)
systems. This productivity effort is addressing a range of issues
from equipment and facilities 4improvements to the development and
acquisition of tools and the training of personnel.

Century Computing’s previous work on MSOCC’s productivity improvement
program, identified the Ada language as a promising technology, and
recommended evaluating Ada on a small “pilot project" related to MSOCC
applications [Century-84].

2 PURPOSE OF THE STUDY

The objective of the study was to evaluate the applicability of Ada
and its development environment for MSOCC. Metrics were identified
for this evaluation, along with an approach to collecting the data
required for these metrics. The evaluation was based on using Ada to
re-~develop from scratch a small scale, real-time project related to
MSOCC applications: an Application Processor (AP) benchmark system.

3 DESCRIPTION OF THE AP BENCHMARK SYSTEM

An AP is a computer that performs the functions required by a
satellite operations control center. The AP Benchmark system was
previously developed to simulate the characteristics of a typical
MSOCC’s AP software system [CSC/SD-83]. Like most AP software, the
Benchmark was developed 1in FORTRAN with some supporting assembly
language.

The AP Benchmark software simulates the following AP functions:

o0 Reads a telemetry data stream from tape - meters the
frequency of tape reads to simulate various data rates.

o Decommutates the telemetry data.

o Performs some limit checking on the data.

o Displays some of the telemetry data on CRT screens.

o Simulates the history and attitude data recording processes.
o0 Simulates strip chart recorders and associated functions.

o Gathers statistics on the above process and generates
reports.

D. Roy

Century Computing, Inc.
2 of 41

SEL Workshop 86 paper
DESCRIPTION OF THE ADA PILOT PROJECT

4 DESCRIPTION OF THE ADA PILOT PROJECT

The pilot project began with a reverse engineering phase to construct
requirements from the existing FORTRAN code. Then, a staged approach
was used to develop the software, using Ada for all project phases:

o We used Ada as a Data Definition Language to produce a data
dictionary during the requirements analysis phase. A special
package, the "TBD" package (fig. 1) helped in the top down
design of the data structure.

0 We used Ada as a Program Specification Language very early in
the project and easily prototyped the data flow. The Process
Abstraction Methodology tools [Cherry-84] (see appendix B)
produced a tasking model that worked at first try (fig. 2a
and b). The preliminary and detailed design templates we
created (fig. 3a and b) proved to be very useful for
enforcing good practices.

o We used Ada as a Program Design Language [IEEE-990] (fig. &)
and refined the PDL into detailed Ada code in the usual
staged manner. The DCL tools and templates for Ada
construct, developed at the onset of the project, had a
dramatic impact on productivity and code consistency.

o We enjoyed the elegance of Ada as an implementation language
and used most of its features (attributes, generics,
exception handlers, etc.)

o Full assessment of the DEC ACS tools was beyond the scope of
this study, but we appreciated the built-in configuration
control tool, the automatic recompilation system and the
symbolic debugger [DEC-85].

The total re-development approach we followed (from requirements to
final tests) led us to believe that we could produce a still more
efficient design. Actually, the PAMELA methodology design rules
detected several extraneous tasks in the current AP benchmark model,
but we decided to respect the existing global structure as the model
was built to represent the typical CPU load of an actual OCC.

D. Roy
Century Computing, Inc.
3 of 41

SEL Workshop 86 paper
DESCRIPTION OF THE ADA PILOT PROJECT

Package TBD is --| Decision deferral package ——*

-=-1 Raises:

- None

—| Overview: =-| Purpose:

- This is an improvement over Intermetrics’ TBD package and IEEE 990
- recommendations about decision deferral techniques.

—~| Effects: —| Description:

—-— The distinction is clarified between types, variables and values.
- The naming is more consistent (enum i, component i ...) and more
— readable (scalar_variable intead of scalarValue)

- There are more definitions (enum type, record type)

- Better compatibility with BYRON (or search utility processing)

-—| Requires: ~——| Assumptions:

- Please only "WITH" this package. By systematically specifying
- "TBD.x" items, it is easier to assess the stage of development of
- a compilation unit.

——] Notes:
- Change log:
— | Daniel Roy 9-AUG-1985 Baseline

subtype scalar _type is integer range integer’first .. integer’last; —-
scalar _variable : scalar_type; —

type access_type is access integer; -
access_variable : access_type; -

type record type is record
component 1 : integer
component_2 : integer
component i : integer
component p : integer
component n : integer

end record; -

record_variable : record_type; -

QOOOO
e We WE wue Ve
{

i

e e

- Inspired by IBM PDL stuff
Condition,CD : Boolean := true; -

- Queues services
type queue_type is array (array_index type) of integer; -
type queue ptr_type is access queue_type; -—

end TBD; —] %

Fig. 1: Excerpt from the TBD package

D. Roy
Century Computing, Inc.
4 of 41

MHS0CC Ade

Validate_

Time | Pilst projsct

Operator Clock
PAM Level |

Time

: ?
™ TLM_stream.. oCC.. Report_
tape ? multibuf ? simulator ? generator 3—5-@3, Printer
report :
4,5 M L 14 | s |

1
T
Display

TLM_displays._. History_and_
muitibuf attitude_Xbuf
16 | S) 16 | S) 16 | S)
! { [
T History_
Strip_chart Displays Atth tude
Sync Async History
lines lines Attitude
tape
Figure 2a: PAM decomposition level 1
D. Roy

Century Computing, Inc.
5 of 41

'
Start4stop NASCOm_block

(Context NASCOM Idle time
switch block
counter
load server
L AD

History
data

Decommutator Equation

extractor
' T |
Histqy_data Stripehart S)
HEOEC Ada
Attitude CRT Limit
data data
Pilot @TOJOG& extractor extractor checker
S S l S S I l AD s |
PAM level 2 T 1
Attitude
da}a digplay

Figure 2b: PAM decomposition level 2

D. Roy
Century Computing, Inc.
6 of 41

SEL Workshop 86 paper
DESCRIPTION OF THE ADA PILOT PROJECT

procedure P (—~| synopsis —-*
param_l : IN some_type := some_constant ; ——| description ——%*
param_n : OUT some_type —-I description ——%
) et i

Fig. 3a: Preliminary design template for procedure (proc spec)

separate () -] ——%

procedure body P (--| Short synopsis. Must be the same as in body. —*
param_1 : IN some_type := some constant ; --| description —*
param n : OUT some type ——| description ——*
) is -] —*

—— *%%%%% Cut and paste from specification. Use Gold D for rest of DOC.

-— Packages
-= types

-= subtypes
- records
— variables
— functions
—— procedures

-— separate clauses

begin —] -
null;
end P ; -] -—*

Fig. 3b: Detailed design template for a procedure (proc body)

D. Roy

kkkkkk

Century Computing, Inc.

7 of 41

SEL Workshop 86 paper
DESCRIPTION OF THE ADA PILOT PROJECT

package body user_interface is --| Isolate user interface -—%*
function inquire int (——| Emulate DCL verb for integers —%
prompt : string -] %
) return inquired_var_type is -] -
inquired var : inquired var_type ; --* The variable we’ll return
begin --| inquire_int --*
--* Displays "prompt (min..max): "
for try in l.. max nr_errors loop —%* until good value or else
begin —=% {<exception block>>

--%* Get unconstrained value
~—% Validate and translate unconstrained value
return inquired_var ; —| —-*

exception —--* recoverable exception when invalid input
when data_error | constraint error => ~=*
—-* display "try again" message
-] end exception --%

end ; ==% {<Lexception_block>>
end loop; ~—% until good value or else
exception -=% catch all handler

U

when others => . —=%
raise; -——%
end inquire int ; -] --%

Fig. 4: PDL extracted from code by PDL tool

D. Roy
Century Computing, Inc.
8 of 41

SEL Workshop 86 paper
RESULTS SUMMARY

5 RESULTS SUMMARY

Some of the objectives of the evaluation were to determine what 1is
required to train software engineers to use Ada, to define adequate
metrics to measure productivity and quality gains and to assess the
current Ada development environment.

5.1 Training

We found that Ada is sufficiently complex that we kept 1learning
throughout the pilot project, and even beyond. We also found that
none of the standard training devices (seminars, books, computer aided
instruction) could alone address the broad range of issues that really
are at the heart of the problem:

In the Ada era, a comprehensive education in the software engineering
principles that form the basis of the Ada culture must replace ad-hoc
training in the syntactic recipes of a language. '

That is why we recommend a variety of continuous education measures in
our report: Assuming adequate familiarization with modern software
engineering practices, at least 4 person-week is the minimum minimorum
training time. This time includes teaching a methodology adapted to
Ada and 50% hands on experiments under the supervision of an expert.

5.2 Metrics And Data Collection Approach

After a review of established research in the areas of metriecs and
data collection, a brief paper outlining the metrics approach was
issued. The metrics work of the NASA Software Engineering Laboratory
was the key input [McGarry-82].

Simple DCL tools were built to gather the metrics data and
comprehensive logs of errors, problems and interesting solutions were
maintained on-line and are part of the deliverables.

5.3 Productivity

Our productivity during the seven weeks coding period averaged 32
lines of Ada source code (LOC) per day and nearly 130 lines of text
(LOT) per day (includes embedded documentation, comments and blank
lines). We experienced a low point of 10 LOC per day at the beginning
of the coding phase, and reached a peak of 90 LOC and 370 LOT per day
during the final week (fig. 5). Averaged over the whole 18 weeks of
development (including reverse engineering with DeMarco before PAM,
tools development, two seminars, compilers installation, etc.)
productivity still remains above 13 LOC and 50 LOT per day.

D. Roy
Century Computing, Inc.
9 of 41

SEL Workshop 86 paper
RESULTS SUMMARY

Although formal verification techniques were not employed, intense
validation testing discovered two errors, both due to subtle
differences between our implementation and its FORTRAN precursor. A
detailed log of all the problems we had at various phases of the
implementation was kept on-line.

Those productivity and quality results are interesting data points,
but they must be taken with the following caveat:

0 We were re-implementing a working system.

0 Our deliverables did not include all standard documentation.
o0 We did not produce a performance prediction study.

o We did not perform a deadlock avoidance study.

o0 Unit testing was not up to the standards we would have
applied to an operational system.

o We sometimes abandoned early our search for better solutionms.
o When a problem arose we did not always research why.
o More than 90% of the code was written by a single individual.

On the other hand, we wrote much more scaffolding and experimental
("throw away") software than a normal project would require.

D. Roy
Century Computing, Inc.
10 of 41

G 2an81a

(101 00SP ‘201 00Z1)

3002 32UNO0S 30 S3NIT 1LJ3rodd 101id vay

001
00¢
00
oo¥

00S
009

00L
008
006
0001
0011

00c1
J01

D. Roy

Century Computing, Inc.

12 of 41

SEL Workshop 86 paper
RESULTS SUMMARY

5.4 Compilers Experience

We first used Century’s NYU Courant Institute Ada interpreter on our
VAX 11/750 for training and tools development. We quickly became
frustrated with this system.

Thanks to NASA’s cooperation, we got some exposure to the Telesoft
compilers and the DEC Ada Compilation System (ACS).

We then installed Softech’s Ada Language System (ALS) on another NASA
VAX. Our conclusion was that the current performance problems of the
ALS made it unsuitable in light of our schedule constraints.

In the end we were granted access to code 520°’s test version of DEC’s
Ada Complilation System (ACS) under VMS 4.1 which we used to develop
most of the pilot project. It is clear to us that the ACS made the
timely completion of our project possible and that, in general, the
quality of the development environment significantly impacts software
development productivity.

As delivered, the Ada pilot project features about the same number of
statements as its FORTRAN precursor (about 1200) but is larger in the
number of lines of text (4,500 vs 2,000). Image sizes are comparable
(about 170 kbytes for Ada vs about 200 kbytes for FORTRAN).

Even though it is difficult to compare run time performance on the
very different computer environments we used, our preliminary results
seem to indicate that the Ada code runs faster than 1its FORTRAN
counterpart. We suspect that our good results may be due to the fact
that some data elements could be directly addressed in Ada and not in
FORTRAN. Nevertheless, this is a completely unexpected result that is
even contrary to popular belief. We think it speaks for the high
quality of DEC’s ACS and the adequacy of the chosen methodology (the
Process Abstraction Methodology for Embedded Large Applications).

6 CONCLUSIONS

Ada is clearly a step forward in the software industry’s search for a
better programming 1language for real-time and embedded systems. Ada
also represents significant advancements in the field of practical
programming language development.

Furtherﬁore, the Ada Programming Support Environment (APSE) and the
Software Technology for Adaptable Reliable Systems (STARS) initiative
will support the language with an impressive set of evolving tools.

But even with these features, it is possible to develop poor software

in Ada. 1In fact, packaging, generics, multitasking and, above all,

representation clauses (that allow direct access to the hardware!)

will have to be closely controlled by competent project managers

because these features are powerful, hence dangerous. Moreover, those

powerful features provide another dimension of design decision. We
D. Roy

Century Computing, Inc.
13 of 41

SEL Workshop 86 paper
CONCLUSIONS

feel that a methodology that helps the software engineer allocate
function and data structures to packages and tasks is necessary.

Ada should prove to be an excellent tool in the hands of competent and
properly trained software developers. It will not be a panacea,
compensating for inadequate methods or training, but it will be
beneficial if properly applied.

In that context, we make the following predictions relative to the
future of Ada:

1. The momentum of the Department of Defense will make Ada a
reality. The last time that DoD backed a language (COBOL),
the language became, and still is, the most popular in the
world.

2. There will be major false starts in the use of Ada,
especially when the aerospace contractors tackle large
projects with newly trained programmers. Ada 1itself will
become the focus of these projects, leaving the target
application in second place.

3. The "reality" of Ada will be delayed due to the immaturity of
the compiler technology, expense of computer resources, and
the training problem.

4. There will be major difficulties at both ends of the
programmer .competency scale. Many of the brightest
programmers will tend to produce overly complex designs,
using every possible feature of the language; the application
itself becoming a side issue. Many of the less competent
programmers will never really understand the Ada technology.

5. Programmer productivity will decrease (relative to
conventional languages) before it eventually increases.

6. Universities will eventually produce proficient Ada software
engineers, using the language as a basis for teaching all the
traditional computer science courses. (This day is getting
near. We recently polled area universities and found Ada
present in every computer science curriculum.)

7 A FINAL NOTE

In July 1985, following the recommendation of the APSE Beta Test Site
Team headed by Dr. McKay (University of Houston at Clear Lake), NASA
officially adopted Ada as the 1language of choice for all flight
software of the space station program.

D. Roy
Century Computing, Inc.
14 of 41

APPENDIX A

BIBLIOGRAPHY

[Century-84] Century Computing Inc., “"Software Tools and Methodology
Study for NASA MSOCC", Laurel, Md., June 1984.

[Cherry-84] George W. Cherry, "Advanced Software Engineering with
Ada", Seminar notes , 1984,

[Cherry-85] George W. Cherry, "The PAMELA (TM) Methodology, A
Process—oriented Software Development Method for Ada.", To be
published.

[cSC/SD-83] Computer Science Corporation, "Gamma Ray Observatory Era
Application Processor Benchmark User’s Guide", Update 1, Doc. No.
CSC/SD-83/6101UDI, January 1984.

[DEC-85] Digital Equipment Corporation, "Developing Ada Programs On
VAX VMS", February 1985.

[IEEE-990] IEEE working group on Ada PDL (990), "Ada PDL draft
recommended practice", 5 March 1985.

D. Roy
Century Computing, Inc.
15 of 41

BIBLIOGRAPHY

[McGarry-82] Frank McGarry et al., "Guide to Data Collection",
SEL-81-101, NASA GSFC, August 1982,

[Methodman—-82] Peter Freeman, Anthony Wasserman, "Software Development

Methodologies and Ada", National Technical Information Service, ADA
123-710, November 1982.

D. Roy

Century Computing, Inc.
16 of 41

APPENDIX B

THE PROCESS ABSTRACTION METHODOLOGY

"The Process Abstraction Methodology for Embedded Large Applications
(PAMELA or PAM for short) is a real-time software development method
which takes full advantage of Ada‘’s features of type abstraction,
process abstraction, exception handling, top—down separate
compilation, and bottom-up separate compilation.

Because the PAMELA method recognizes that abstract processes as well
as abstract data types are ideal modules for programming in the large,
the method is process-oriented as well as object-oriented.

The method is primarily a top—-down, outside-in method; but it allows
and encourages the bottom—up generation or incorporation of software
components (library units).

The PAMELA method contains guidelines to ensure that program units are
reusable or portable or both reusable and portable. It also contains
guidelines to ensure superior real-time performance (for example,

guidelines to ensure that the minimum number of necessary tasks are
defined)." [Cherry-85]

"The process abstraction methodology (PAM) is based on the concept of
a hierarchical structure of processes. The process as a data
transforming element and data flow as a connection 1link between
processes are central concepts in this method." [Cherry-84]

At first glance, the PAMELA methodology '"process graphs" (fig. 2a and
2b) 1look very much 1like DeMarco’s Data Flow Diagrams. The major
difference however, is that in any data driven methodology, there is
no apparent synchronization between the processes nor any explicit
representation of the synchronization between the flow of data and the
processes. In a process graph, the processes communicate by the Ada
rendez—-vous mechanism. Because the concepts of data flow and task to
task synchronization are part of the semantics of the Ada rendez-vous,
PAM’s process graphs overcome one of the major limitations of data
flow diagrams for real-time applications. This makes PAMELA
applicable to the requirements analysis phase. Most importantly,
PAMELA defines a limited number of "process idioms" and provides rules
for their use. These rules guide the analyst in a very smooth
transition between requirements analysis and preliminary design. It
is this author’s personal style to indicate the applied rules by their
D. Roy

Century Computing, Inc.
17 of 41

THE PROCESS ABSTRACTION METHODOLOGY

number on the process graph. For instance, the symbols [1,6 | S] at
the bottom of the TLM stream multibuf box in fig. 2a, indicate that
this Single thread process (S), results from a user’s requirement to
provide an asynchronous interface (rule 1) of an application
independent and hardware dependent nature (rule 6). The "?" and "I"
show which process requested or originated the data flow, a control
information wvital to real-time applications (but specifically
forbidden on DeMarco’s DFDs).

During the preliminary design phase, the hierarchy of process graphs
is mapped to Ada constructs such as abstract data types (type
definition, procedures and functions), packages and tasks
specification objects by a small set of simple rules. These rules
encourage the re-use of library units. To simplify, multiple thread
processes are mapped to packages. These packages encapsulate the
single thread processes mapped to Ada tasks. 'The leaves of the tree
of this hierarchical structure are the procedures and functions
invoked by the single thread processes." [Cherry-85]

In the detailed design phase, Ada PDL is entered in the preliminary
design object bodies. This PDL is then refined into Ada code.

We found that PAMELA builds on proven modern software engineering
techniques (DeMarco, Parnas, Hoare, Myers) to provide a very smooth
transition between all software development phases; a quality deemed
fundamental in the methodman document {Methodman-82]. Furthermore,
"PAMELA uses all of Ada‘’s advanced features (generics, packages,
tasks, exceptions, and both forms of separate compilation) wisely and
effectively. PAM adds a welcome limitation, form, and rationale to
the use of Ada’s many features which, without a suitable design and
programming discipline, can and 1likely will be wused in bizarre,
ineffective, and inefficient ways." [Cherry-84]

D. Roy
Century Computing, Inc.
18 of 41

THE VIEWGRAPH MATERIALS
of the
D. ROY PRESENTATION FOLLOW

0££6-£56
(3LVHOJYOINT “INTLNWOD AUNINID

A0Y¥ TIINV

JJ0SW Y04
vav 40 NOILVNTVAT

supndwo

Ezaccw

D. Roy
Century Computing, Inc.

19 of 41

133r0Y¥d 1071d TIWWS V NO 350 SLI JLVYISNOWID -

J9YNONYT ¥av 3JHL SSASSY -

JJ0SW ¥0dJ VOV 3LYNTWA3 0L Q3N ©

AS0TIONHO3L ONISIWOYd ¥ SV Q3I41IN3AI vdy O

#86T NI JJ0SW 404

AONLS »A90T0QOHL3W ONY STI00L FWYML40S. S, A¥NINGD O

Bunndwo
AONJS vav s,TTS 3000 30 SNI9NYO Ainjue

Century Computing, Inc.

D. Roy
20 of 41

REQUIREMENTS ANALYSIS

D. Roy
Century Computing, Inc.
21 of 41

SNOTLVOITddY FWILTVIY HLIM WS 40 SWIT40Y¥d JHL QIINIWNIOQ M

SNOTLIWIIZ123dS INIW TW -
AYUNOILIIQ vivd 1Nd V¥ -
a32nQ0¥d 3IM “S700L 3HL ONISH

(103 ‘J40NNY “HOYY3S) STI00L SWA ONILSIX3 ANV -
SALVIdW3l Y¥0LIQ3 IX3L ONISA -

ISYI4 SISATUNY AFYNLONYLS QUVANVLS ¥ Q3WH04¥3d M

0

0

0

SISATUNY SINIWIYINOIY :1J3royd 1071d

Century Computing, Inc.

D. Roy
22 of 41

OPCON

OPCON is the benchmark software’s operator interface

(>0PCON-val-op-int). It also controls the initial activation and the
shutdown of the system”s other tasks.

SPECIFICATIOR

Level-l-gingle-tasks is (EVEPRT, — Events prianter
TIMLOD) -~ CPU time loader

Begin

1. Prompt operator for Run—params
2. Activate OCC simulator == >0PCON-ver—-0CC-act
3., for task in Level-l-single-tasks

1. Activate task -~ D0PCON-ver-st-act

4., end loop

S. for i = 1 to IDLE-number-tasks

1. Activate IDLE-1 -— >0PCON-ver-idle-act
6. end loop
7. delay req-run—time ~= J0PCON-ver-run—-time

8. Shutdown all activated tasks
9. delay 1 second == See note 2 >0PCON-ver-shut-time
10. Print stat-report (PRTRPT) — >0PCON-val-stat-rep

end

Fig 4-3: Minispec example built with the tools

D. Roy
Century Computing, Inc.
23 of 41

(WYd ¥0 VT13WVd)
SNOTLIWIITddv 394V (300393 ¥od

AS071000HLIH NOTIIVYISEY SSIJ0¥d 3HL

Bunndwo
Ainue

mputing, Inc.

D. Roy
Century Co
24 of 41

ade)
apnINY
AJ01SIH

apnN1 Y

~AJOSIH
i

v

(s

o'l

JngxTepnipyle

.

~pue—AJoiS|H

el

Jajuld

1JodaJ

\

S bl

st

18IS

G

JojeJauab b2

~3oday

o ,

Uil

| 19427 WYd
12efedd Jo1id

BPY 0SH

NIV

saui| Saul|
Juhsy Judg .
E
séelgsia 1eyd—q1ns £
po— |— . w..
1] 1 ! m
I }
s | 91) s | 91) e
& 2%
~Jnqpinw Jnax RO
—sAe(ds|p~1L —)Jeyd
\ / —diJ
sdeidsiqg
“UNL
_ 4
v]
W | s s | 9)
.| Ad0lq . ade)
Joreinwys &{To5%eN nginw 4 WL
—3JJ0 ~wesJisTillL
_ 2 Y,
swieJed
SWil ~uny | Maels
i 1
| 4 S V-— N
weJed
%9019 - ; sweJed w&:ml,_sm._oao
SWHL ~a1epiieA
_ J

(s av

j

Jaxyoayo
Huf

S

S)\

N

5J0S53204d
uojienb3

.
g
N

\.

S avy

)

Jajunod
alwli} 3P|

(.

/

QOMmMWLm“m
!

Ae|dsip elep g
WL apnyiily mo
i i Z 19A3] WYd E
~ ' ™ £
(s | s (s | s 5
._Sommﬁxm J019BJ1%8 ﬁ@@q@&a 91015 Rm,mm
el eiep - 5o
142) PMPY) Aes
N EPY JI0SH
ng 5
. tmcuT.r;m Smun%?m_r
1 : i i
&3 avy 'S S) 'S S
J0loeJ}Xa J0loBJlXa
J03BINWWO023Q e12p BEp
43S AJ03SIH
L WL y 9 y L y
™~
S S S ay
JOAIIS peo|
22019 YIIIMS
WOISYN
9) y _ a”.mucou J
%2%&8@42 asmm\ HEIS

NOIS3A AYWNIWITIUd

Bunndwo
Ainjue

puting, Inc.

Century Com

D. Roy
27 of 41

DEVELOPMENT EFFORT DESCRIPTION

BARON preliminary design help

GOLB B => BARON TBD package GOLD C => -—I (doc), --* (PDL)
GOLD D => Bring in DOC template GOLD E => Task entry

GOLD F => Function GOLD H => This text

GOLD P =)> Package GOLD S => Procedure

GOLD T => Task GOLD W => Bring WITH$EBP file in
GOLD X =)> Exception

GOLD > => half tab adjust right (%) GOLD < => half tab adjust left (*)
GOLD TAB => half tadb GOLD DEL => delete half tab (*%)

(*) Must select range first like you would for tab adjust (control T)
(**) Careful, really does "delete" 4 times.

BE SHORT IN PRELIMINARY DESIGN DOCUMENTATION

Algorithm:
Can be ref to textbook and other biblio.
Effects: --| mini-spec:
Describes module functional requirements (more detailed than overview).
Errors:
Describes error messages issued by module.
Modifies: -~| side effects:
Lists non-local variables modified (x.all. Access values, Global var).

Notes:
User oriented description of dependencies, limitations, version
number, status (prel des, code, etc.). Limit change log to
package level.

Overview: —| Purpose:
Describes module usage in very general terms.

Raises:

Lists the exceptions that can be raised and not handled by module.
Requires: ~-| Assumptions:

Warns designer and user about limitations of implementation.
Synchronization:

Describes synchronization requirements, tasks termination conditionms,

rendezvous time-outs, deadlocks prevention and other tasking reqs.
Tuning: —| Performances:

Specify timing and performance requirements, Addresses performance

issues that user can control.

Fig. 4-10: Preliminary design tool help

D. Roy
Century Computing, Inc.
28 of 41

Package TBD is --| Decision deferral package —*

-=] Raises:

- None

--| Overview: —| Purpose:

- This is an improvement over Intermetrics’ TBD package and IEEE 990

- recommendations about decision deferral techniques.

--| Effects: --| Description:

- The distinction is clarified between types, variables and values.

- The naming is more consistent (enum i, component i ...) and more

- readable (scalar_variable intead of scalarValue)

- There are more definitions (enum_type, record_type)

- Better compatibility with BYRON (or search utility processing)

--] Requires: ~——| Assumptions:

- Please only "WITH" this package. By systematically specifying

-— "TBD.x" items, it is easier to assess the stage of development of

- a compilation unit.

—=| Notes:

- Change log:

~—| Daniel Roy 9-AUG-1985 Baseline |

- Constants
some_constant : constant := 1; -
positive constant : constant := 10; -
negative constant : constant := -10; -
real constant : constant := 1.0; -

- Defer decision about type (real),(discrete(enum,integer)), subtype

- (natural,defined subtypes), range etc... that belong to detail design

subtype some_type is integer range integer’first .. integer’last; bl
subtype scalar type is integer range integer‘first .. integer’last; --

-— . Distinguishes between type, variable and value (enum_;).

- By convention (consistent with math notation) n is last.

- Should be Enumeration_ ... all over for consistency.

- But this is so much more comfortable.
type enum_type is (enum 1, enum 2, enum i, enum p, enum n); -
enum variable : enum_type := enum 1; -

- Keep consistency with enum_type
type record type is record -
component 1 : integer
component_2 : integer
component i : integer :
component p : integer
component n : integer :
end record; -
record variable : record_type; -

QOO0 OO0
e Ve Ve Ve ue
|
|

- Inspired by IBM PDL stuff
Condition,CD : Boolean := true; -

- Queues services
type queue_type is array (array_index type) of integer; -
type queue ptr type is access queue_type; -

end TBD; —-! -

D. Roy
Century Computing, Inc.
29 of 41

NOIS3a d311v13a

Bupndwo

Ainjue

3

Century Computing, Inc.

D. Roy
30 of 41

procedure P (—| synopsis —*

param_l : IN OUT some_type :=
param n : IN OUT some_type
) s

Fig. 4-7: Preliminary design

some_constant ; -—| description ——*

| --| description —*
—] %

template for procedure (proc spec)

separate () -] -—%*
procedure body P (--| synopsis.
param_l : IN OUT some_type :=
param_n : IN OUT some_type
) is

Must be the same as in body. —%*
some_constant ; --| description ——*

| --] description —-*
—] %

— *%k%*k* Cut and paste from specification. Use Gold D for rest of DOC., *&&kk%

Packages
types
subtypes
constants
records
variables
functions
procedures

separate clauses

begin -] —-*
null;
end P ; -] —-%

Fig. 4-8: Detailed design template for a procedure (proc body)

D. Roy
Century Computing, Inc.
31 of 41

separate (mbuf) --| --%
task body P 18 -—| processing task —*

procedure process_block (=~| Do something useful ~-#
inp_ptr : IN data_ptr_type: --} for imput blocks —*
outp_ptr : IN data ptr_type -=| for output block —-*

. - “*
v

procedure put_blocks (=={ Dump block queue —*
Queue : IN out_Q _type ~-| Where all output blocks are queued —*
) s -] -

begin | P —*

{{exception_block>> %
begin --% for recoverable exceptions

<< till_EOF > -~| loop until all input tasks are terminated —¢*
while TBD.CD loop —& Verification:
<< build_out_Q > =-| loop until EOF or output queue full —#
while TBD.condition loop -—¢ Verification:
--% get in _ptr (RV with I tasks)
process_block (in_ptr, out_ptr); —
-=~% build queue
end loop; ~—“* build out Q

put_blocks (out_queue); ——* watch EOF case
end loop; —=* till EOF
exception | --%
vhen others = —] —t
—| end exception; -—*
end ; =% <{<exception_blockd>
exception =--| --%
when others => -] -
—| end exception; -

end P ; —=| —=*

D. Roy

Century Computing, Inc.
32 of 41

1S31 ONV 3000

Bupndwo

E:u:ow

Century Computing, Inc.

D. Roy
33 of 41

DEVELOPMENT EFFORT DESCRIPTION

BARON code help

Gold A Access type Gold M Modulo statement

Gold B Block statement (range,rename) Gold N NEW (instantiations/access/tasks)
Gold C Case statement Gold P Package use examples

Gold D Bring in doc template Gold R Record (variable clause)

Gold E Entry statement Gold S Procedure (declaration and code)
Gold F Function (declaration and code) Gold T Tasks (select,terminate)

Gold G Generics (overloading) Gold U Predefined attributes

Gold H This HELP menu Gold W ?

Gold 1 IF-THEN~ELSE statement Gold X Exception (raise)

Gold L Loop statements

GOLD > => half tab adjust right (*) GOLD < => half tab adjust left (*)
GOLD TAB => half tab GOLD DEL => delete half tab (**)

(*) Must select range first like you would for tab adjust (control T)
(**) Careful, really does "delete" 4 times.

Fig. 4-15: Code and unit test tools built-in help

D. Roy
Century Computing, Inc.
34 of 41

<<{labeld> -k
select —-—%

--% task.entry (params);
or | else --*

~-% delay (time out) | any_other statement
end select; -—* <{{labeld>

Fig. 4-20a: Entry call template copied in program

Selective entry call (no more that 2 alternatives !)

<TLM_in>> -=-* calls TLM stream multibuf.do_you_have a block ?
select =k

TLM stream multibuf.do you_have a block (nascom_block Xbuff);
else -—%

--% increment TLM stream multibuf overrun
TLM stream 1 multibuf stat.increment (overrun);
end select; ——% <<TLM in>>

Selective WAIT (any number of alternatives)

<{<scr_loop>> ——%* Accept and send block
loop ——%
select ~—%
accept here_is_a block (--| Accept NASCOM block —#*
nascom blo?k Xbuff : IN nascom block Xbuff type --| —*
) do -] —*
local block := nascom_block_}buff H
end here_is_a block ; -]t

--*% calls sttip chart _multibuf.here_is_a set !
put_line ("SCR data extractor saw a “block™);

or Tk
terminate; =- could be delay for time-out
end select; —%
end loop; --* scr_loop

Fig. 4-20b: The examples buffer for task entries

D. Roy

Century Computing, Inc.
35 of 41

entury
omputi

D€

METRICS

D. Roy
Century Computing, Inc.
36 of 41

(¥371dW0D ONY 39YNONVT JHL JO S3YNLvad DIN ¥04) vaY'IVR9 -
(***213 *SIT" SINIWWOI ONIGNTINI) YAY'SWITd0¥d -
S1¥0d3¥ ADIIIM -

130443 ¥N0 ONIINIWNIOA SIT14 TYY3AZS INIT NO Ld3

SEM @3NI43¥ ¥ 034013A3

(¥3INNOJ 207 “¥39907) 2@ NI S7001 ITdWIS d340T3A3M

140443
SITYLIW ¥N0 40 SISWE FHL LV SYM YHOM A¥OLYYOEY1 ONIYIINIONI 3YYML40S

Bunndwo
SIIYLI Ainjue

Century Computing, Inc.

D. Roy
37 of 41

ing

entury
omputi

D¢

RESULTS

D. Roy
Century Computing, Inc.
38 of 41

DEVELOPMENT EFFORT DESCRIPTION

Hours | 4
Training 253 22,9
Requirements 105 9.5
Design 93 8.4
Code/test 335 30.3
Tools dev 319 28.9
Fig. 4-17: Development data

D. Roy
Century Computing, Inc.
39 of 41

1-Z 3an8T14

ve
M —

Qo ©
e O
N e

00¢
ooF
00S
009

SUMMARY

0oL
008
006
0001
001 |

00c1
(101 00S¥ ‘201 0021) 7201

3002 32YNO0S 40 SINIT 1J3rodd 101id vay

Century Computing, Inc.

D. Roy
40 of 41

NOILVINIW3T4WI 9¥3dNS Vv SI SOV 230

(N91S30 LN3IJ1443 G3INA0¥4) SN W04 T173M AYIA GINYOM VIINWVL
(AIN3YYNINOI O/1 °S3dAL NSVL) SN ¥O4 173IM QINYOM ONINSYL
(3¥nSS3¥d 37NA3IHIS ON) 09 OL AVM 3HL SI 1930r0Yd 10114
(ONOD3S VOV “1S¥IJ 3S) MON ONINIVYL L¥VLS

(s100L GNV AS07000KHLI3N V Y03 G33IN) ALIXITdHOI VAV

(11 *104 *100 *1Sd) ALITILVSYIA VOV

Bupndwo

SNOISNTINGY AImue

Century Computing, Inc.

D. Roy
41 of 41

N86-30368

OBSERVATIONS FROM A PROTOTYPE IMPLEMENTATION
OF THE COMMON APSE INTERFACE SET (CAIS)

Mike McClimens, Rebecca Bowerman, Chuck Howell,
Helen Gill, and Robbie Hutchison
MITRE Corporation

EXECUTIVE SUMMARY

This paper presents an overview of the Common Ada Programming Support
Environment (APSE) Interface Set (CAIS), its purpose, and its history.
The paper describes an internal research and development effort at the
Mitre Corporation to implement a prototype version of the current CAIS
specification and to rehost existing Ada software development tools
onto the CAIS prototype. Based on this effort, observations are made
on the maturity and functionality of the CAIS. These observations
support the Government's current policy of publicizing the CAIS
specification as a baseline for public review in support of its
evolution into standard which can be mandated for use as Ada is today.

CAIS HISTORY

The Ada programming language was developed by the United States
Government to promote the maintainability, portability, and
reusability of software. Although no special software tools are
required to use the Ada language, a collection of portable and modern
tools is expected to enhance the benefits of using Ada. The term Ada
Programming Support Environment (APSE) is used to refer to the support
(e.g., software tools, interfaces) available for the development and
maintenance of Ada application software throughout its life cycle.
The Common APSE Interface Set (CAIS) is the interface between Ada
tools and host system services, which is being standardized to promote
portability of tools among APSEs.

In 1980, the DoD sponsored two efforts to develop APSEs: the Ada
Language System (ALS) contracted to Softech by the Army and the Ada
Integrated Environment (AIE) contracted to Intermetrics by the Air
Force. The DoD also funded publication of the document, Requirements
for Ada Programming Support Environments, nicknamed "Stoneman". It is
the Stoneman document that first defined layers within an Ada
Programming Support Environment. The Ada Joint Program Office (AJPO)
was formed in late 1980 to serve as the principle DoD agent for the
coordination of all DoD Ada efforts.

Multiple DoD-sponsored APSEs threatened to undermine the Ada program's
goal of commonality. In 1late 1981/early 1982 AJPO established the

M. McClimens
MITRE Corp.
1 of 29

e B
LT Yo M
o ’ “ EI]

Kernel APSE Interface Team (KIT) as a tri-service organization chaired
by the Navy. The KIT was supported by an associated group consisting
of members from industry and academia, called the KIT Industry and
Academia (KITIA). The charter of the KIT and KITIA was to define the
capabilities that comprise the Kernal APSE layer (KAPSE) and its
interface to dependent APSE tools. The interface between the KAPSE
and dependent APSE tools became called the Common APSE Interface Set
and a subgroup of the KIT/KITIA called the CAIS Working Group was
formed to define a standard for this set of interfaces.

The CAIS has been an evolving concept. It began as a bridge between
the Army and Air Force APSEs but has become a more generalized
operating system interface. However, issues such as interoperability,
configuration management, and distributed environments have not yet
been addressed. Significant changes have appeared with each iteration
of the CAIS specification up to the submittal in January 1985 of CAIS
Version 1 as a proposed Military Standard (MIL-STD-CAIS).

In response to concern from the Ada community that the CAIS, as
defined in Version 1, is too premature for standardization, a policy
statement was released along with the proposed MIL-STD-CAIS directing
that use of the CAIS be confined to prototyping efforts. The policy
clearly states that the CAIS should not at this time be imposed on
development or maintenance projects where the primary purpose is other
than experimentation with the CAIS.

Further refinement of the CAIS is planned, but a contract to produce
Version 2 of the CAIS specification has not yet been competed.
Potential future applications of the CAIS include several major
government projects (e.g., STARS and the NASA Space Station).

CAIS OVERVIEW

The CAIS is a set of Ada package specifications that serve as calls to
system services. The implementation of these packages may differ
between systems while the package specifications remain the same.
These package specifications then become a system independent
interface between software development tools and the host operating
systems. The CAIS is composed of four major sections: a generalized
node model, support for process management, an extended input/output
interface, and an abstraction for the processing of lists.

The generalized node model is by far the most significant part of the
CAIS. Processes, structures, and files may all be represented as
nodes. Among other features, the node model provides a replacement
for the host file system. As such it contains enough functionality to
support the needs of tools rehosted from a wide range of file systems.
The node model is a hierarchical tree augmented by secondary
relationships between nodes. Attributes may be assigned to any node
or relationship in the tree. The attribute and relationship
facilities provide a powerful mechanism for organizing and
manipulating interrelated sets of nodes. The node model also provides

support for mandatory (secret, etc.) and discretionary access control
(read only, etc.).

M. McClimens
MITRE Corp.
2 of 29

Process support and an extended set of 1/0 interfaces are integrated
with the node model. Process support is not extemsive but does
include the facilities to spawn and invoke processes or jobs and
facilities for communication of parameters and results between
processes. The I/0 interfaces, on the other hand, are quite
voluminous. Although they constitute more of the specification than
the node model, the I/0 interfaces largely duplicate the I/0 'support
provided in Ada. In addition to integrating 1I/0 with the node model,
CAIS I/0 tightens some of the system dependencies 1left in Ada and
defines standard interfaces for devices such as scroll terminals, page
terminals, and tapes.

The CAIS defines an abstract data type for processing lists. CAIS
Lists may be any heterogeneous grouping of integers, strings,
identifiers, sublist, or floating point items. Items may be named or
unnamed. Lists are wused throughout CAIS for the representation of
data such as attributes and parameter 1lists, and they provide a
powerful abstraction for tool writers in general.

MITRE'S PROTOTYPE CAIS

Under a three staff year (Oct 84 to 85) internal research and
development effort, MITRE Corporation has implemented a large subset
of the CAIS specification and has exercised both rehosted and newly-
written tools on this prototype. The MITRE prototype includes the
node model, the list utilities, Text Io, Direct_Io, and Sequential Io.
Parts of the process model and scroll terminal have also been
implemented in support of a line editor and a menu manager rehosted
from other systems. In the next year the prototype will be completed,
additional tools will be rehosted, the CAIS will be rehosted to a
second system, and an analysis of distributing the CAIS will be
undertaken. The prototype CAIS was developed wusing the Verdix Ada
compiler running wunder Ultrix on a DEC VAX 11/750. Of the two tools
rehosted to the prototype, one was originally developed using the Data
General Ada compiler, and the other, using the Telesoft compiler.

The objective of MITRE's prototype development was to submit the CAIS
specification to the rigor of implementation and actual use. It was
believed that implementation of a prototype would test the
implementability of the CAIS specification, would identify the level
of support that CAIS provided to existing tools, and would result in
practical input to CAIS designers, DoD policy makers, and program
managers. The primary focus was on evaluating the CAIS functionality
and not on developing an efficient implementation.

The consensus from this study is that the CAIS, for the most part, is
internally consistent and provides a good foundation for continued
work in standardized operating system interfaces for Ada programming
support environments. The next version of the CAIS must, however, be
considerably more complete in its specification. Table 1 1lists the
specific observations made as a result of the prototype

M. McClimens
MITRE Corp.
3 of 29

Section | Item Scale Scope

3.1.1 The conceptual model is consistent, N/A N/A
except for the I/0 packages.

3.1.2 Some of the semantics are ambiguous. Major Semantics

3.1.3 Redundant capabilities and alternate Medium | Both
interfaces need tightening.

3.1.4 The nesting of packages within the Minor N/A
package CAIS is not explicitly required.

3.1.5 The use of 1imited private types implies Minor N/A
a need for additional facilities.

3.1.6 The error handling model in the Major | Both
specification is insufficient.

3.1.7 Parameter modes and positions are Minor Interface
sometimes inconsistent.

3.1.8 The use of functions versus procedures Minor Interface
should be consistent.

3.2.1 Multiple definitions of subtype names Minor Interface
exist.

3.2.2 Inconsistent descriptions of access Minor N/A

synchronization constraints are given.

3.2.3 Unnecessary comp]exity'is introduced Minor Semantics
with the predefined relation 'User.

3.2.4 The description of implied behavior of Medium | Semantics
open nodes is good but needs to be
more explicit.

3.2.5 Boundary conditions are undefined. Medium | Semantics

3.2.6 €apabilities for node iterators are Medium | Both
limited.

3.2.7 Definition of node iterator contents is Medium | Semantics
ambiguous.

3.2.8 . Pathnames are inaccessible from node Minor Both
iterators.

M. McClimens
MITRE Corp.
4 of 29

Section | Item Scale Scope
3.3.2 Ability to specify initial values for Minor Both
path attributes is missing.
3.3.3 Error in sample implementation of Minor N/A
additional interface for
Structural_Nodes.Create_Node.
3.4.1 Treatment of files departs from the Major Both
node model.
3.4.2 Consequences are implied by a common Medium | Both
file type.
3.4.3 Initialization semantics are incomplete. Medium | Semantics
3.4.4 Mode and Intent are coupled. Minor Both
3.4.5 Additional semantics are needed for Medium | Semantics
multiple access methods that interact.
3.4.7 Import_Export of files is under- Medium | Both
specified.
3.4.8 Semantics of attribute values are Minor Semantics
conflicting.
3.4.9 Interfaces diverge from Ada IO. Minor Interface
3.5.1 Clarification of dependent processes Minor Semantics
is needed.
3.5.2 Support for process groups is needed. Medium | Both
3.5.3 Proliferation of process husks is Minor Semantics
implied by the interfaces.
3.5.4 Disposition of handles following process Medium | Semantics
termination needs to be clarified and
restricted.
3.5.5 Parameter passing and inter-tool Major Both

communication need to be re-evaluated.

M. McClimens
MITRE Corp.
5 of 29

Section | Item Scale Scope

3.5.6 Response is undefined when attempting to Minor Semantics
spawn a process that requires locked
file nodes.

3.5.7 Clarification of I0_Units and I0_Count Minor Semantics
with respect to meaning of Get and Put
operations is needed.

3.6.1 The use of predefined attributes should Medium Semantics
be clarified.

3.6.2 Attribute values should not be restricted | Medium | Both
to List_Type.

3.6.5 The order of Key and Relationship Minor Interface
parameters should be reversed.

3.7.1 Enclosing string items in quotes Minor Semantics
decreases readability and is unnecessary.

3.7.2 List_Utilities should present a textual Medium | Both
rather than a typed interface.

3.7.3 Token_Type should include all list items, | Minor Both
not just identifiers.

3.7.5 The Position parameter should never be Minor Interface
required for operations on named lists.

3.7.6 Nested packages names conflict with Minor Interface
Item_Kind enumerals.

4.3 Handling of control characters remains Medium | Semantics
poorly defined.

4.4 The Scroll_Terminal package provides N/A N/A
improvements over Ada IO packages.

M. McClimens
MITRE Corp.
6 of 29

implementation. Many of these comments reflect ambiguities in the
text. Some major refinement of exception handling, input/output, and
the list utilities is recommended. Other comments reflect specific
technical areas and may be addressed by simple modification or
addition to existing interfaces. While the required changes certainly
appear to be within the scope of the planned upgrade, Version 2.0 of
the CAIS will likely contain significant changes to the operational
interfaces for tools. The most difficult problems to evaluate are the
ambiguous areas of the specification which may simply disappear or
which may result in considerable conflict depending upon the nature of
the resolution that is adopted. ’

MAJOR OBSERVATIONS AND RECOMMENDATIONS

The results of MITRE's prototype implementation of the Common APSE
Interface Set support the Government's current policy for promulgating
the CAIS. The CAIS provides a relatively consistent set of interfaces
which address portability issues, but it is not refined to the degree
that it can be mandated as a standard. The non-binding Military
Standard CAIS issued 31 January 1985 publicizes the direction that the
CAIS is taking. It can be used as guidance for current development
efforts and provides a baseline for public critique.

An upgrade of the current definition of CAIS is planned. The new
document, CAIS Version 2.0 will be an input to the Software Technology
for Adaptable Reliable Systems(STARS) Software Engineering Environment
program. It is intended that CAIS Version 2.0 have the quality and
acceptance required of a true military standard. To achieve this
quality, the upgrade will have to add rigorous precision to the
current document, will have to refine several existing technical
areas, and will have to include technical areas previously postponed.

CAIS Version 2.0 should be expected to contain major refinements and
additions to the current document. The MITRE prototype effort has
found five major issues that must be addressed in the next revision of
the current document:

The current document is ambiguous and imprecise--more
rigor and precision is required.

* The List Utilities abstraction can be made simpler,
more complete, and more consistent.

* A central model is required for CAIS exception
facilities.

The CAIS IO model is not uniform-=- it is inconsistent
with Ada and with the CAIS node model

* The CAIS does not adequately address interactions
between itself and the host operating system.

M. McClimens
MITRE Corp.
C - 1{ 7 of 29

RESOLUTION OF AMBIGUITIES

The precision with which the CAIS is specified in the current document
leaves many issues open to the interpretation of the implementor. The
semantics of many routines are not specified in detail; implications
of alternate interfaces and suggested implementations are not
addressed in text; broad statements are made in introductory sections
and then are not reflected in discussions of specific routines;
information on specific topics (such as predefined attributes) is
dispersed throughout the document; and interactions among routines are
not qualified. Together these deficiencies result in confusing the
intentions of the CAIS and in giving an impression that the CAIS is
not completely thought out. Unless corrected, they will make
implementation of the CAIS difficult and standardization across CAIS
implementations improbable. Clarification of the specification is
also necessary to achieve the widespread acceptance necessary for
adoption of CAIS as a standard.

LIST UTILITIES REFINEMENT

During the most recent revision of the CAIS document, the
List _Utilities package underwent significant modification. Further
refinement is necessary. The List Utilities package provides an
abstraction that is used throughout the CAIS. Our recommendation is
that the definition of Token Type be expanded so that it can represent
any of the list items currently supported (lists, integers, floating
points, strings, and identifiers). This will allow the removal of
redundant subprograms, will provide a more consistent interface, and
will provide more functionality with less complexity. Enhancements to
List_Utilities may allow the CAIS features that rely on List Utilities
to also be enhanced.

CENTRAL EXCEPTION MODEL

The treatment of exceptions in the current document is inadequate.
The Ada specifications do mnot correspond to the text, and the text
references exceptions by unqualified names. The same exception name
is used to refer to several different error conditions. Thus it is
difficult to determine the complete set of CAIS exceptions and their
relationships. It appears that exceptions were considered only on a
procedure-by-procedure basis. A CAIS wuser will expect a single
exception model that is consistent across the entire CAIS. We have
proposed a candidate set of exceptions that addresses the entire CAIS
and that reduces the instances of exceptions with multiple meanings.
The method of exception handling in the Ada 1I/0 packages could be
adopted as a8 model for coordinating exceptions across several
packages, or all exceptions could be declared in the package CAIS.
However, the CAIS must evolve to one, consistent, well-engineered
model for exception handling.

M. McClimens
MITRE Corp.
8 of 29

CLARIFICATION OF THE 1/0 MODEL

The co-existence of both node handles and file handles makes the CAIS
file nodes inconsistent with either process or structural nodes. The
entire treatment of I/0 facilities in CAIS suffers from its wunclear
relationship with Ada I/0 facilities. Large sections of the CAIS I/O
packages currently refer to Ada 1I/0 packages without addressing
specific effects of differences. While Ada defines distinct file
types for Text_lo, Direct_Io, and Sequential_Io, the CAIS defines a
single file type and indicates that operations from different I/0O
modes may be intermixed. However, many implications arising from this
capability are not adequately addressed. The description of CAIS I/0
would be greatly improved by discussing its intended compatibilities
and differences with Ada I/0.

CAIS AND THE HOST OPERATING SYSTEM

For an indefinite time, CAIS enviromments will be required to co-exist
with the environment of the host operating system. It is unreasonable
that all host facilities be converted to interface with a newly
installed CAIS. Military Standard CAIS simply does not address issues
related to this co-existence. Even the procedures for importing and
exporting files between the two systems disregard important properties
of host files and of CAIS files. Methods need to be established for
reporting host errors, activating host processes, and making the
contents of file nodes available to non-CAIS programs. Unless
standards are established to integrate the host and CAIS environments,
users of each CAIS will develop their own methods, and portability
across CAIS implementations will be impacted.

M. McClimens
MITRE Corp.
9 of 29

THE VIEWGRAPH MATERIALS
for the

M. McCLIMENS PRESENTATION FOLLOW

M. McClimens
MITRE Corp.
10 of 29

0 9p1S

ami
“3ug a1eM)OS BPY £EM -d10) FYLIN HJALOLIO¥d SIVD FTALIN

a1
‘Buq a1emiog epy ccM
‘uoneiodiod) MILIN

AHdALOLOYUd SIVO HULIN

M. McClimens
MITRE Corp.

11 of 29

a=zyl 1L 3pus
"3ug aremyog epy £eM "dieDd FYLIN 3dALOLONUd SIVD TULIN

epy juduw[duio) o] FSJV prepuelg
daod V JO juswdo[aA3(3y SeM [e0O) djewnjj)

(STV) waysAg s3endue] epy YL HIV YL
puy sjuswuoiriAauyg Sumnsixyg uaamjag a8pug
V SV PV 0], papuajuj sjoo], puy 1iduoy —
uonedonpy uj pea el

M. McClimens
MITRE Corp.
12 of 29

puy S[00]L [ednII) MdJ v do[aas o], seM Awry o

(HIV) juswuoIiauy pajeiddu] epy 3y, :judwdorasag
(HSAV) HSd PV 10 3JIAI9G PEIT SeM 3DI0] ITY 4

punoidpeq

asyl
“8u3 a1eM)JOS EPY €EM

(Siv)) ies
eovpIeu|
3sdv
uowwo)

TPNS
"d10) TYLIN AJALOLOYUd SIVD TULIN

Ayse3
peyesu| eg uvd
sjoo) 8y}
seujjnoy sezjseydwy
indingnndu) pue SiuL
UO[IRJ0AU} {00] ‘SUCHOUNS
1eBB8nqeg eujyosy eieg 1eBsusyy
10 uvopenByuo)
SO 180H
$8920y oteqeieg
%@ yong seupnoy
wepuedeq
9)sh
asdv)
JuewuoHAU3
SujwweiBosd
opy

M. McClimens
MITRE Corp.
13 of 29

NOILVZIAIdVANVLS 3SdV

a=sii
“Bugy aremyjog epy £EM

areq

-d10) FYLIN

pamqsiq

&

SIVD piepue)g

)

Aiqerndoijuy
Ajrurroyrun)
Ajiqeyrog

€ 3pus
3dALOLOYd SIVO FALIN

M. McClimens
MITRE Corp.

14 of 29

©
. .

S[E0D SIVO

a=il ¥ apuS
"Sug aremyog epy £€M "di0) IYLIN 3dALOLOYd SIVO TALIN

S}10J3q ASdV ueadoinyg [e19A3g

(4S) yudwuoIrAuy 3urdUISUy 31eM}JOS QYYV.LS

q4S uonelg adedg YSYN

M. McClimens
MITRE Corp.
15 of 29

JNAS SIM =

SWId)SAG

JO AJdLeA Y uQ dqereay sdidwo)) [enIswuwo)

punoidxoeqg

S 3pMIS

asi
“Sug aremyjog epy £eM "d10] TALIN 3dALOLOYd SIVO TULIN

dIV pue S1V
Y uaamiag AN[IqesroJ Surjowor “‘SaDIAIG GIV)
3sM) Jey] epVv U uaptipg sjoo] yroddng oy sep| (o

sHSIV AIV
PUVy STV UsaMmidq ,33plig, V SV PV 01 sadejIaju]
durya(oL pawiog (DOMSIVD) dnoro Sunjiom SIvD)

M. McClimens

punoigdddeyqg

a=ydl 4 3pPHs
"8ug azemyjog epy geM "d10D FYLIN AdALOLOUd SIVO TULIN

SNV dAeH sa3pq puy sapoN ydein) —
SOLIOPDII(], IO “SISSI0IJ ‘SIIJ 9 UeD) SIPON —
SINqUINRY
WM yderd papairq v sI [PPON Sutdprapun

SOTjURWAG
pajenossy JO uondrnsag v puy suonedynadg

d8exded epy JO 19S V SV paurnjd(sf SIVD &

M. McClimens
MITRE Corp.
17 of 29

SIVO 34l JO MIIAIAQ

a=ul 8 2pP1IS
"Sug aremy05 ePY €EM *d10D TALIN 3dALOLON¥d SIVD TULIN

SWIdII JO }SI] SNOUISOINPY —

adA 1 ejeq Pensqy —
SONI[I}] 3SIT

podxgpiodwy —

(" mem ‘11010G) sIdIAJ(] “~bag “pariq “x3] —
| O/1 &

aumsayj/puadsngpioqy djoaujumedg —
JUSUWIdSeURA SS3001]

wR)sAg o1 papuedxy —
Judwddeuey SpON -

M. McClimens
MITRE Corp.
18 of 29

SIVO 943} Ul st jeym

a=zl

6 2PNS

"Sug aremyog epy €EM "d10D FULIW FdALOLOUd SIVD JALIAN

SINdd

O/1 [9497] MO7]
wRIsAg Sunjerad uonjejudw3dg/3ure g

Surnpaypg

sjdnirajug
epv JudwSeue ATOWDA
Ad>uazmouo)) 103 ppoddng

LB

P b

M. McClimens
MITRE Corp.
19 of 29

SIVD 9y} Ul JOU ST JeyM

asii 9 2p1S
"8u3 aremyos epy gem "d10) TYLIN 3dALOLOYd SIVD FULIN

SIVD JO u3isag papung -
pauue]j ST Pe1juo)) g UOISIdA —

AuQ Surdfyoyorg 10y Aprdxgy —

ALS-TIN ¥JeIQ V SI T UOISIdA —
uonezipiepue}q

9INJPWIILJ PIAINIdJ 1A ASIdAOIUO) —

SIVD JO snjejg juarmny)

dejIdRUl WasAg SuneradQ
Juspuadapul-wdIsAG [eIauas) Y 0] PIAJOAY SeH SV

punoidoeyqg

M. McClimens

azul 01 2pHS
“Suy aremyyog epy £eM “d1ay LN FAALOLOY STVD TULIA

s1uSIsa SIvD ol nduy [ednoerg spraorg
s[00], 310oddng sadejrajuf aYyJ, [[9M MOJ] 2jenjeaq .
uoneoynads 3O Anprqeuswaidug JjenjeAy] am
2d£30301J STVD 9YL O] S[OO], epVY HOJ .

ad£j0301 Judwardw] puy SIVD JO 19SqNng 193[3G

M. McClimens
MITRE Corp.
21 of 29

NI0M S8AT TULIN JO saa1p3lqO

ami L1 3pPMS
"8ug azemyog epy £EM *d10) TYLIN 3dALOLOYUd SIVO TULIN

XNILTN U0 wajsAg yjudwdo[aaa(g epy XIpIaA Suisn
paje[os] a1y sanuapuada (XINN) ISOH

UOIjeWIOJU]

9PON 9103S O Pas() S] 95e10}g Arepuodag

M. McClimens
MITRE Corp.
22 of 29

SIVD JO 195qng juawapduy of s Apoprg doy o

Ayotld v LON sI 4ouapiyyg ‘Aydosoryg pg/epy

yoreorddy jeotuydaj,

asil 71 3PS
“Suy aremyjog epy €M ~d10) FULIN AdALOLONUd STVD MALIN

sHAS/ASd PUV $20eJIdjU] SO PIzIpIepuelg

uj 1o panunuo) 104 aPIYaA pooy V ST SIvO a0

uonedyadg JO uonpadsuy Ag pur] ol pieH A1/ ag

PINOM JeYL suwd[qoiJ SurdAodup) ST uonejudwdjduy

pood

S| syeJ Suowry ,Adudjsisuo)) [enjdaduo), [ferdA) M

LINVOIJINDIS

2d IITM SIVD Sursn) 104 aAm)) Surured|

M. McClimens
MITRE Corp.
23 of 29

SJUdWIWIO)) [eIdUdn)

€1 2pPUS

naﬁ
-d10) TULIN 3dALOLO¥d SIVD FULIN

-Sug aremyog epy ¢Em

ssaudjardwo)

UoISIAIIJ

1081y IOJA] YIM UIPTIM 3] 0} SPIdU SIYD-ALS-TIN -

M. McClimens
MITRE Corp.

24 of 29

SOIIN3IqUIY JO UOTIN[OSIY

L APYS

asii
‘Sug a1eM)OS EPY £EM *d10D FULIN 3dALOLONUd SIVD TULIN
*913 *39YIN
“Ad0D *3LVIUD .
) SNOI1V¥3d0 IST1 913 ‘ONIX ‘= N
N3
QQO ﬁ SNOILVY3d0 N3%0L at
hvsw Y
4 .
| T % o O INTA
SN
v v
3 A'IIW
W et o NINOL-0L INI
st
N/ 1300W NINOL _

M. McClimens
MITRE Co

25 of 29

Ip.

SUaO I, JO sisr] juasaiday] pinoys sadA17)sr]
JUIJSISUOIU] pUE dWI0SIdqUIN)) ST [POJAl JULIND) dY

JUWAULIRY SIBIHN IST]

asu S1 9pHS
“Sug aremyjog epy £eM | *d10) FALIN 3dALOLO¥d STVD TULIN

Surueaq 131D ® YSI[qe}sy 0} pauIjIy SoweN —
pasn are A3y} a1aym aSe>pe yoeq ul powieudy —
I3Y}30] parepadq —

pazienjua) aq pnoys suondadxyg GV Jo 39S YL M

SIVD 03 ddeJIaju] S,19S) SPIJJY —
SIVD-AdLS-1IN Jo Ajre)) spajJy —
INPad01J-Ag-2INPId0IJ PISSAIPPV ‘Appusa1in)

M. McClimens
MITRE Corp.

26 of 29

E_ucE uonjdadxyg [enud)

a=sdl 91 apIS
"8ug aremyog epy €EM *d10) TALIN 3dALOLOYd SIVO NALIN

dAyoan
adA1arg °CAL °TH

reryuanbag adA1apoN

suonjerdd(paxXIA SRV —

adA1 a1 ardyynmuw s,epy woiy s1dy1q ddA1 79[M
[OIIU0)) SSINDY SPRJJY —

adA1apoN s,sre) woiy s1d331q 2dA 1 o[M

M. McClimens
MITRE Corp.
27 of 29

[PPOIN O/I JO uonedIIIe])

asyl L1 2pNs
“Bug aremyog ey £EM *d10D FULIN FdALOLOYd SIVD TULIN

oL

®

sawreN 9fij 3SoH 10J duanbag adedsy ; ssodxy —
PIsSAIPPY 2q Ishuu SIIJ ISOH 0} pue SIPON 0} SSIIDY
SIVD YiMm d[qredurod aq 3,uom sanIfe] 3SoH [[V

M. McClimens
MITRE Corp.
28 of 29

wd)sAg 3uneradQ 1S0H 24} pue SIV)D

anal
‘Bugy aremyjog epy €EM

8L 2pPYIS

-d10D) TALIN AdALOLOUd SIVO FULIN

d[qe[TeAy AJdpIM 300G YL, deN
Surssanoi] panqiysicy 103 poddng ppy
SINA/SIVD 01 s1o01 XIN(/SIVO #od
SUOTJEISHIOM Ung ‘SN A O] 9dAjojoig y10g
SIVD 03 S[00], BPY 3104 0], 3NULU0))

ad£30301J puaixy

40

¥ |

M. McClimens
MITRE Corp.
29 of 29

98xd JO 1S3y 10§ saanalqO

N86-30369

MEASURING ADA* AS A SOFTWARE DEVELOPMENT TECHNOLOGY
IN THE SOFTWARE ENGINEERING LABORATORY (SEL)**

William W. Agresti***
Computer Sciences Corporation
and the SEL Staff

ABSTRACT

An experiment is in progress to measure the effectiveness of
Ada in the National Aeronautics and Space Administration/
Goddard Space Flight Center flight dynamics software devel-
opment environment. The experiment features the parallel
development of software in FORTRAN and Ada. The experiment
organization, objectives, and status are discussed. Experi-
ences with an Ada training program and data from the devel-
opment of a 5700-line Ada training exercise are reported.

INTRODUCTION

An experiment is underway to assess the effectiveness of Ada
for flight dynamics software development. This paper is an
interim report on the experiment, discussing the objectives,
organization, preliminary results, and plans for completion.

*Ada is a registered trademark of the U.S. Government (Ada
Joint Program Office).

**Proceedings, Tenth Annual Software Engineering Workshop,
National Aeronautics and Space Administration, Goddard
Space Flight Center, December 1985.

***Author's Address: Computer Sciences Corporation, System
Sciences Division, 8728 Colesville Road, Silver Spring,
Maryland 20910.

W. Agresti
CSC
1 of 35

ea Vet

The Ada experiment is planned and administered by the Soft-
ware Engineering Laboratory (SEL) of the National Aeronau-
tics and Space Administration's Goddard Space Flight Center
(NASA/GSFC). NASA/GSFC and Computer Sciences Corporation
(CSC) are cosponsors of the experiment. Personnel from all
three SEL participating organizations (NASA/GSFC, CSC, and
the University of Maryland) support the experiment.

TECHNOLOGY ASSESSMENT IN THE SEL

There is a great deal of optimism concerning Ada's potential
effect on software development. The SEL seeks to establish
an empirical basis for understanding Ada's effectiveness in
a particular environment--namely flight dynamics software
development at NASA/GSFC. Figure 2* shows some of the char-
acteristics of this development environment. (Reference 1
contains a more detailed description.)

As Figure 2 implies, in seeking to understand the effective-
ness of Ada, the SEL is approaching this task as it has
addressed the assessment of other software technologies.
Some methods that have been demonstrated to be effective in
other environments have not been effective in the SEL envi-
ronment. The SEL is therefore cautious about expecting that
reported experiences with Ada will obtain in the SEL envi-
ronment. Instead, the SEL seeks to conduct an assessment of
Ada in its own environment.

The assessment methods used by the SEL have included con-
trolled experiments, case studies, and analytical investiga-
tions. The Ada assessment is referred to as an experiment,
although it is clearly not a controlled experiment. Iden-
tifying this effort as an experiment follows the general use

*All figures are grouped together at the end of the paper.

W. Agresti

CSC
2 of 35

of the word to denote "any action or process undertaken to
discover something" (Reference 2). As the later discussion
will make clear, the Ada experiment is a highly instrumental
case study of an Ada implementation in parallel with a
FORTRAN implementation, with both systems developed in re-
sponse to the same requirements.

OBJECTIVES

The primary objective of the experiment (Figure 3) is to
determine the cost-effectiveness of Ada and its effect on

the flight dynamics environment. A related objective is to
assess various methodologies that are related to the use of
Ada. An initial set of such methodologies includes object-
oriented design (Reference 3), the process abstraction method
(Reference 4), and the composite specification model (Refer-
ence 5). Additional methodologies will be identified as the
experiment continues.

Reusability is an important tactic for cost-effective soft-
ware development, both in a general sense and in the SEL
environment. Ada was designed (in part) to facilitate re-
usability. This experiment seeks to develop approaches for
reusability when Ada is the implementation language.

The Space Station is a program of great size, complexity,
and significance to NASA. Ada has been recommended as the
language to be used for the development of new software for
the Space Station. An objective of the Ada experiment is to
develop measures that may assist in planning for the large-
scale use of Ada in the Space Station program. Examples .of
such measures are those that relate to size, productivity,
or reliability in an Ada implementation.

W. Agresti
CSC
3 of 35

Because the experiment is not completed, these objectives
have not yet been met. However, experiences thus far will

contribute to addressing the objective of understanding the
effect of Ada.

EXPERIMENT PLANNING

The experiment consists of the parallel development, in
FORTRAN and Ada, of the attitude dynamics simulator for the
Gamma Ray Observatory (GRO) (Figure 5); which is scheduled
to be deployed in May 1988. It is worth noting that the
dynamics simulator is part of the standard complement of
ground support software planned for the GRO mission. The
simulator would routinely be developed in FORTRAN alone;
because of the experiment, it is being developed in Ada as
well.

When completed, the system is expected to comprise

40,000 source lines of (FORTRAN) code, requiring 18 to

24 months to develop on a VAX-11/780 computer. Each team
was staffed initially with seven personnel from NASA/GSFC
and CSC. Each development project is expected to require 8
to 10 staff-years of effort.

Three teams have a role in the experiment (Figure 6): the
Ada development team; the FORTRAN development team; and an
experiment study team consisting of NASA/GSFC, CSC, and
University of Maryland personnel. The study team is respon-
sible for planning the experiment, collecting data from the
development teams, and evaluating the progress and results
of the experiment. The study team will also be able to com-
pare the software products generated by each team.

The profiles of the development teams (Figure 7) reveal that
the Ada team on average is familiar with more programming
languages and is more experienced than the FORTRAN team.

W. Agresti
CSC
4 of 35

However, the Ada team is less experienced with dynamics sim-
ulators, the application area of interest.

Striking differences exist in the relationships of the teams
to their development tasks (Figure 8). The FORTRAN team is
able to reuse some design and code from related systems.

The Ada team is charged with starting fresh to design a sys-
tem that can take advantage of Ada-related design approaches.
For the Ada team, both the development environment and the
language are new.

Figure 9 shows the timeline for the Ada experiment with the
activities of the three teams during the expected 2-year
duration of the experiment. The timeline shows the FORTRAN
team to be slightly more than one development phase ahead of
the Ada team. The shift is due to the training in Ada re-
quired by the Ada team at the start of the project. The
FORTRAN team, by contrast, was able to start immediately
with the requirements analysis activity--the first phase in
the development process.

The study team is collecting data on both development teams.
Figure 10 shows the range of resource, project, and product
data collected. Wherever possible, routine SEL forms were
used. However, special Ada versions of two forms--the com-
ponent origination form and the change report form--were

" developed. The new component form allows the identification
of an Ada component as a package, task, generic, or subpro-
gram and further recognizes that a component can be a speci-
fication or body. The new change form adds a section to
identify separately any Ada-related errors.

TRAINING APPROACHES

A major portion of the ‘experiment thus far has been the Ada
training program, which was planned by the study team, in

W. Agresti
CSC
5 of 35

particular .by the University of Maryland personnel. The
principal training resources (Figure 12) were as follows:

® Ada language reference manual (LRM) (Reference 6)
°® Ada textbook (Reference 3)
Ada videotapes (Reference 7)

The 27 videotapes were viewed by the team over a l-week pe-
riod. A University of Maryland graduate student, experienced
in Ada, was available to direct the training--that is, to
plan the schedule of tape viewing, answer questions about
Ada material, stop the tapes to clarify the material, lead
the discussion between tapes, and assign reading and small
coding assignments. Two sets of diskettes for use on per-
sonal computers were available to the team to supplement the
videotaped instructions. Lectures on Ada-related design
methods--the state-machine abstraction and process abstrac-
tion method (Reference 4)--were presented to the team.

A principal component of the Ada training program was the
design and implementation in Ada of a practice problem. The
purpose of this training exercise was to enable the team to
apply what it had been taught about Ada and to begin working
together as a team.

Figure 13 shows the coverage of topics by the training ele-
ments. The textbook and the training exercise covered all
three training topics: the Ada language itself, software
engineering with Ada, and Ada-related design methods.

Experience with Ada training led to several recommendations
for future sessions (Figure 14). Consistent with several
other published recommendations (e.g., Reference 3), the
appropriate emphasis should be on software engineering with

Ada and not simply the language syntax and semantics. The
methods and resources used in training the Ada team--
videotapes, class discussion, and a practice problem--were

W. Agresti
CSC
6 of 35

effective. Additional hands-on experience with the Ada com-
piler (in addition to work on the practice problem) is also
beneficial.

Two months of full-time training are recommended for each
staff member. After this period, the staff member would be
able to join a development team and begin contributing.
Ideally, this first assignment as a developer should be
carefully chosen and closely monitored by a more senior de-
veloper. Reference 8 contains a more thorough assessment of
Ada training methods and more detailed recommendations for
the design of future Ada training programs.

DATA FROM THE ADA TRAINING EXERCISE

The training exercise (or practice problem) emerged as the
single most valuable element of Ada training. It also pro-
vided the study team with an opportunity to practice moni-
toring a small Ada project.

The exercise was to design and develop an electronic message
system (EMS) that allows users to send and receive elec-
tronic mail and to manage groups of users (Figure 16). EMS
has been used as a student programming project at the
University of Maryland, where it was implemented in the SIMPL
language, requiring typically 1000 to 2000 lines of code.

For the Ada team, EMS was a chance to practice object-

oriented design as well as to experiment with Ada. The
study team could try out the data collection system and
begin measuring a small Ada development.

The completed EMS system in Ada comprised 5730 lines of code
(Figure 17), much larger than the student projects in SIMPL.
An analysis is currently underway to compare the functional-
ity of the Ada and SIMPL versions. It is already clear that

W. Agresti
CSC
7 of 35

the Ada version has a much more extensive user interface and
help facility. Also, the 5730 source lines contained only
1402 executable statements. The drop from source lines to
executable statements is more severe than in SEL FORTRAN
systems, where reductions of only 2 to 1 are typical.

Developing EMS required 1906 staff-hours (including 570 hours
of training). A productivity/cost measure frequently used

in the SEL is the number of hours per thousand executable
statements. Figure 17 shows the cost of EMS development to
be greater than the average cost of developing FORTRAN sys-
tems. Of course, the EMS example in Ada represents only a
single data point whereas the FORTRAN cost data are taken
from hundreds of FORTRAN modules in the SEL data base.

It is wise not to rely too heavily on the EMS data as an
indicator of future Ada projects. There are several sound
reasons why the costs could be higher or lower than those
experienced with EMS.

Costs could be higher in the future because of the following:

° EMS was developed by a highly motivated staff eager
to apply Ada. As the use of Ada becomes more routine, the
staff may not be as motivated by the novelty of using a new
language in an experimental setting.

) EMS had no documentation requirements, unlike typi-
cal SEL projects.

® EMS did not involve tasking.

® The application domain of EMS (electronic mail) was
easier to understand than the flight dynamics area. As a
result, the EMS effort in requirements analysis and accept-
ance testing was proportionally less than it would be for
flight dynamics projects.

W. Agresti
CSC
8 of 35

Costs of the Ada development may actually be lower than sug-
gested by EMS because of the following:

® The staff will be better trained. Recall that EMS
was a training exercise; teams in the future will be more
experienced in Ada.

] The Ada team (with seven people) was too large for
the EMS assignment. The size of the team was driven by the
scope of the GRO dynamics simulator development. The cost
of EMS would likely have been less if the team were smaller
(approximately three people).

° The Ada development environment for EMS was not
only new but also highly unstable. Only unvalidated Ada
compilers were available when coding of EMS began. The team
progressed through version§;1.3, 1.5, and 2.1 of the Tele-
soft compiler before the DEC Ada compiler arrived.

Figure 17 shows that the error rate for EMS was lower than
that of FORTRAN systems in the SEL data base. Once again,
this result should not necessarily be attributed to the use
of Ada on EMS. The FORTRAN systems are much more complex,
and the testing requirements in the flight dynamics area are
much more rigorous than for EMS.

Figure 18 shows the distribution of effort among design,
code, and test for EMS and typical FORTRAN systems. Whereas
the relative effort for the three activities is roughly
equivalent for FORTRAN systems, 60 percent of the EMS Ada
effort was spent on design. Of course, the use of Ada
raises the question of redefining the cutoff between design
and code activities. If Ada is used as a process design
language (PDL), the design activity can include the delivery
of a design document of compiled specifications, Ada defini-
tions of types, and Ada PDL. 1In such cases, it may be

W. Agresti
CSC
9 of 35

understandable that more effort is spent on "design" activ-
ity, with proportionally less effort on "code."” Again, the
more substantial testing requirements for FORTRAN flight
dynamics systems may explain the difference in relative
effort devoted to testing EMS versus typical FORTRAN systems.

The profile of the EMS code in Figure 19 reveals that the

EMS Ada modules were smaller on average. The lower percent-
age of lines of EMS that are blank or comment (39 percent
versus 51 percent) may be due to the greater self-description
possible with Ada object names and types.

STATUS AND OBSERVATIONS

Figdre 21 revisits the experiment timeline to show the actual
activity to date. The activity profiles of the two develop-
ment teams confirm that progress is being made according to
plan.

With the Ada experiment not yet complete, no definitive
statements can be made on the effectiveness of Ada in the
SEL environment. Nevertheless, Ada's influence is being
felt on personnel issues, software products, the development
environment, and the software development process (Fig-

ure 22).

The clearest observations relate to the activity that has
dominated the early phases of the experiment--training. The
need for effective training is real and should be included
explicitly in Ada development plans. Training will occur

whether or not it is scheduled; wise managers will plan for
it. Two months of full-time training appears to be the
right amount. The training exercise emerged as an extremely
effective method and is strongly recommended.

W. Agresti
CSC
10 of 35

The use of Ada led to a larger product than the student ver-
sions of EMS in SIMPL. It is premature to state whether Ada
products will continue to be larger. EMS did demonstrate
that many more design relations are expressible in Ada. The
use of Ada will likely lead to changes in recommended inter-
mediate products, for example, at design reviews., Current
recommendations are oriented to FORTRAN implementations, so
the design products highlight the invocation structure of
the code. Ada design products can express other relations
in addition to invocation--for example, the "uses" relation,
exception handling, and the management of the name space.

The use of Ada has not degraded the performance of the de-
velopment environment. Stress test are now in progress, but
the early indications are that the use of the DEC Ada Com-
pilation System (ACS) is not adversely affecting the per-
formance of the system. Both compilation time and execution
time appear to be within acceptable limits, although more
complete testing is being performed.

The most important tool is a validated compiler. The DEC
ACS has demonstrated that it is a production-quality system.
Although other Ada support tools may be used by the team in
the future, the DEC ACS has been adequate by itself to sup-
port development. The library management facility built
into the ACS has been especially helpful.

Although such conculsions may appear less than daring, the
Ada experiment has demonstrated that Ada is learnable and
that an Ada project is measurable. The results thus far
lead the study team to be optimistic that they will be able
to meet their experimental objectives and establish an
empirical basis for understanding the effect of Ada in the
flight dynamics software development environment.

W. Agresti
CSC
11 of 35

ACKNOWLEDGMENTS

The Ada experiment is managed by F. McGarry and R. Nelson of

NASA/GSFC and actively supported by representatives from all
SEL participating organizations (NASA/GSFC, CSC, and the
University of Maryland)--especially V. Basili, E. Katz,

Y. Bengit, G. Page, and V. Church. |

REFERENCES

Software Engineering Laboratory, SEL-81-104, The Soft-
ware Engineering Laboratory, D. N. Card, F. E. McGarry,
G. Page, et al., February 1982

Webster's New World Dictionary, World Publishing Co.,
New York

G. Booch, Software Engineering With Ada. Menlo Park,
California: Benjamin/Cummings Publishing Co., Inc., 1983

G. W. Cherry, "Advanced Software Engineering With Ada--
Process Abstraction Method for Embedded Large Applica-
tions," Language Automation Associates, Reston, Virginia,
1985

W. Agresti, "An Approach to Developing Specification
Measures," Proceedings, Ninth Annual Software Engineer-
ing Workshop, NASA/GSFC, November 1984

American National Standards Institute, Inc.,
ANSI/MIL-STD-1815A-1983, Reference Manual for the Ada
Language, February 17, 1983

Alsys, Inc., Waltham, Mass., "Ichbiah, Barnes, and Firth
on Ada," videotape series, 1983

R. Murphy and M. Stark, Ada Training Evaluation and Rec-
ommendations, SEL-85-002, NASA/GSFC, October 1985

W. Agresti
CSC
12 of 35

THE VIEWGRAPH MATERIALS
for the

W. AGRESTI PRESENTATION FOLLOW

W. Agresti
CSC
13 of 35

NOISIAIQ S3ON3IIDS WALSAS " VM "n v

NOILVHOdYHOD SHONHIDS HALNdWOD

‘ (2.601)-HOV-LEB

(301440 INVHDOUd
INIOr vaVv) LNJIAINYHINO0D "S'N FHL 40 MHVYINIAVHL a3H3L1SI93H V S1 VAV«

44V.1S 13S 3H1 ANV

(NOILLYHOdHO0I S3IN3IDS H31NdINOI)
1LS3HOV 1119

13S
JHL NI ADOTONHO31l LN3IINdOT3AId
JHVMI140S V SV VAV ODNIHNSVIIN

T SdNOI4A

Agresti

w

14 of 35

NOISIAIQ S3ONIFDS WALSAS M w
NOLLVHOJdHOD SEONHIOS HALNdWOO

3009 40 S3ANIT IDHUNOS N09L OL ME 3ZIS e
XVA 230 ‘SINVHINIVIN 3181LVdINOD-NE] o
SOHOVIN HITHWISSY %SI ‘NVHLHO4 %58 @
SW3ILSAS GNNOYUD JHHILNIIDS e

1

(e«60L)-HOV-1E8

W. Agrest

INIWNOUIANI
INIWdOTIAIA IHVYMIH0S
SOINVNAQ LHOITH J4S9/VSVN

73S JHL NI LNIINSSISSY ADOTONHIIL

¢ HaNdId

1

NOISIAIG S3ADN3IDS WILSAS
NOILLVHOdJHOD SHONHIOS HALNJdNWOO

Agrest
16 of 35

Q
)
O

w

(960L)-UDV-L£8

NOILVLS II2VdS 404 SIHNSVIN dOTIAIA o

JHVML10S
378vSN3ad 404 SaHOVOUddV dO13aNA3A o

013 "(INSJ) T3AO0IN NOILYIIdID3AdS
31LISOdIN0D (A00) NDISIA AILNIIHO
-103rdo 40 SSaAN3IAILDI443 SSASSY e

vayv 40 1LIOVdiAi
ANV SSIN3IALLII443-1S0D ININYIALEA e

SAAILOArao

€ SaNO1g

f 35

NOISIAIQ SIONIDS WILSAS Omo 2
NOILLVHOJdHOD SHONAIODS IHILNANOD Ma =
=

Q
7]
Q

17

«{WE0L)-HOV-LES

SNOILVYAHY3ISd0 ANV SNLVIS e

3S10d3 X3
ONINIVYL YaVv INOdd vViva e

SIHIOVOUddVY DNINIVHL e

DONINNV1d LNINIdIdX3 e

y d4NODId

NOISIAIQ SIFONIFDS WIALSAS " VM "" v
(+601)-HOV-1£8 NOILLVHOJdHO0OD SHONAIDS HHLNAWOO

SHVIA-44dV1S 0L Ol 8 L0443 —
37d03d £ -ONIddV1S —
08Z/LL-XVA ‘LNIININOHIANT —
SHLNOIN #Z Ol 8L ‘NOIlLVHNA —

3a09 40 S3ANIT I24NOS
(NVHL1HO04) 000°0b :(QILVINLLST) IZIS —

HOLVINIS SOINVNAQ (0UD)
AHOLVYAHISEO0 AVH VININVYD :103rodd

vav
ANV NVH1404 NI LNJINdOTANAIA T3TIVHVYd

ININIHAdX3 vav 13S

¢ HdNDId

1

W. Agrest
CSC

18 of 35

NOISIAIQ SADN3NDS WIALSAS

{«601)-HDV-1E8

NOILLVHOdHOD SHIONHAIOS HALNJAWOD

asvd viva
13s :

viva viva

SO

989 'VSYN

283 ‘'VSVYN viva

WvY3il vav

INV3L1 NVHLHOd

NOLLO3HIa
AN3IWNdO0TIAIA

NOLLVINHOINI
404 $1S3N03Y

JHVMIH40S vavy

FJUYVMIL0S

NVHLHO4 ANVIAHVIA 40 ALISHIAINN

‘080 ‘'VSVYN
ONILVNTVAI
ONINIVHL
ONINNV1d

Wv3il A4Nis

SNOILVAN3ININODIY
GNV SININSSISSVY

NOILLVZINVODHO LNINIH3IdX3

9 H4NOIA

W. Agresti

CSC

19 of 35

NOISIAIOQ S3FONIIOS WALSAS

(U.601)-HOV-LEB

NOILLVHO4dHOO SHONJIOS HHLNAAWOD

%EY

L

%99

8V

€

ERLELLEL) €
HOLVTINWIS SOINVNAQ
HLIM SHIgW3IN WYL

(NV3IIN) 3ON3IHIdX3
ANINOTIAIA JUHVMILHI0S
40 SHVIA 40 H38WNN

(NVIAQ3I)
JONIIHIdX3 NOLLVIINddV
40 S3dAl 40 H3IgNNN

(NVIG3IW) NMONX
S3IOVNONVT 40 H3IGNNN

Wvil vav

V3L NVH1HO0d

JILSIHILIVHVHO

S311404d NVl

L JINDTIA

SO

Agresti

w

20 of 35

NOISIAIQ S3AONIAIDS WALSAS
NOILVHOdY0D SHONHIOS HH.LNJAdNOOD

{«601)-HOV-LE8

39NIIYIdX3
ADOTOdOHLIN ADOTOGOHLIW
/39VNONVT MIN IDVHIANY /IDVNONV1
INIWNOHIANI

HITNAWOD M3IN 379V1S INIWd013INIA
INON %0€ OL Sl 3SN3y 3d0D

HOVOUddV NDIS3IA M3IN | SINALSAS L1SVd Ol HVIINIS | 3DOVLIHIH NOIS3d

Wv3il vav INV3L NVH1HO04 JILSIHILIVHVHO

SION3H3441d INVIL

8 MANDIA

W. Agresti
21 of 35

NOISIAIQ SIDONIHOS WIALSAS

NOILLVHOJdHOO SHONHIDS HALNJANWOOD

{«601L)-HOV-LES
_ 9861 _ 861
") ") “ Z0 “ 1) “ 0 “ £0 “ Z0 “ 1)
_ | _ | | | _ _
| _ _ _ ! ! | !
| _ _ _ | ! | _
_] 1 1 . 1
A¥3IAM3A is3a1
| anNv W31SAS ANV nz&mmm__woo NOIsaa m_mmhww_u,‘
| JONV.1d30IV NOILVYDILNI
I | | |
| | i | | | _
_ | [
| _ |] | |
_ _ 1 (] 1 | i
ALITIAVSN VAV SS3ASSY @ OHLIW
SIYNSVIN LOVHIXT o mm__%mw_m_nmwmhmw< ° S3UNSVIN INAWIHEIDA N1 ¢
NOLLYLNIWITdINI SSASSY @ vav 3Ni43a e NOIL23T109 Viva INIH3a e
i _] | | | | |
| | | | | _ I I
| _ | | _ _ “ _
| _ _ _ | | _ |
“] y] _ _ | _
hmmhn.”__wp?w 1831 NDISIa SISATVYNVY | SIW3
“ NOLLYHOILNI dNV 3009 SL.034 Nivil

6 T9NDId

OSO

Nvil
NVHiHOd

Wvil
AdQNis

Wvil
vav

W. Agresti

CSC
22 of 35

NOISIAIO SADNIIDS WILSAS mo
NOLLVHOdHOD SAONAIDS HALNANOD

(«60L)-HOV-LEB

NOILYNTVAZ
SIONVHD e AAILOACENS o IDVSN HILNWOD e
IJ1INA3IHIS 'LHO443 _
'3Z1S 40 NOILVWILS3 @ ININOdINOD A8
SHOHYIT e ALIAILOV AS —
NOILVININNDOA ® ._oo,—;uo._onwwmm_m& ° 140ddNsS
“I¥DINHOIL ‘LNIWIDVNVYIN —
AHOLSIH HLMOYD e I71404d VIS 140443
19NA0Yd 193roud $304NO0S3IY

NOLLOITIO0D ViVvd

0T FINOIA

W. Agresti
23 of 35

NOISIAIG S3ON3IOS WILSAS
NOILVHOJdHO0D SHONHAIOS HHLNAAWOD

(ee.60L)-HOV-1E8

SNOILVAHISE0 ANV SNLVIS e

3S1043X4d
DNINIVYL vaVv INOYd V1ivd e

SIHOVOUddV ONINIVHL e

ONINNV1d LNJNIHIdXT ©

1T FTENOIA

W. Agresti

24 of 35

NOISIAIQ S3ZONIDS WILSAS
NOILLVHOJYO0O SHONHIOS HHLLNJdWOOD

(ee.60L-4DV-LES

HVNINZS AHHIHO 3DH03D ¢

"ONI ‘SASTV —
"ONI ‘SOIHdVYDHIdAH — S3ILLISIA

"ONI ‘SASTV — $3dV103dIA

~VAV HLIM DNIHIINIDONI FHVMLH0S., ‘'HO00d AAVHYD — N00d.1X3lL
{(INHT) TVANVIN 3ON3H343H 3DVNONVT vav

S334NO0S3d ONINIVYL

¢T TdNOIA

W. Agresti

CSC
25 of 35

NOISIAIG S3ONIDS NIALSAS

(92,60L)-HDV-1E8

NOILVHOdJdHO0D SHONHIOS HHLNAWOD

SO

° ° ° SAQOHLIW NDISIA SNOIYVA
vav HLIM
° ° ° ° DNIYIINIONT FIHVMIIOS
° ° ° ° IDVNONV1 Vav
SNOISSNISIa
w.._w__."_u&wmw S3uNLOAT ‘S3113NSId 1X3L «._ma 21401
'S3dV.103AINA

SIHOVOUddV ONINIVYHL 40 IOVHIANOD

€T ddNDIJg

1

W. Agrest
26 of 35

NOISIAIQ S3ON3IODS WILSAS
NOILLVHOJdHOD SHONAIOS HALNdNOD

t1

(+Z60L)-4OV-1£8

W. Agres

27 of 35

JINLL-TINd SHLNOW ¢ — aoldid INIL e

3S19H3X3 ONINIVHL
JIONIIH3IdX3 NO-SANVH
NOISSNISIA SSV1D

S3idV.103dIA — SAOHIIN e

vav
HLIM DNIH33NIONT JHVMI40S — JIdOL e

SNOILVANININOD3Y
ONINIVHL

7T J9NDI4

NOISIAIQ SION3IDS WILSAS Om O
(ee,601L)-HDV-LE8 NOILLVHOJdAYHO) SHONHAIDS HALNANOD

SNOILVAH3ISEO0 ANV SNLVY1S e

3S1243X3
ONINIVYL YAV WNO0Y4 VivVa e

SIHOVOUddV DONINIVHL e
ONINNV1d LNJWIHIdXT e

ST JyNNDIg

W. Agresti
CSC

28 of 35

NOISIAIO SIDONIDS WILSAS U
(22,60L)-HOV-1E8 i NOILLVHOJHOD SHAONHIOS HIALNJINOD M Vm w

| NDIS3a
Q3LNITHO-103rd0 ‘HOVOUddV NDISIA e

3d09 1dINIS
40 SANIT 324NOS 0002-000L —

ANVIAHVIA 40 ALISHIAINN
1V 103rodd dNOoU9 INIANLS — :FOVLIHIH e

SdNOoYyY

ANV SH3sSN IDVYNVIA - TIVIA
JINOH.LOIT3 IAIFIIH/ANIS NOILINNL e

(SIAIF) INTFLSAS IDVSSIN JINOHLOITI
3SI10H3IX ONINIVYHL vayv

9T J4NDIJ

W. Agresti

29 of 35

NOISIAIO SIONIIDS WILSAS O
NOILLVHOJdHO0D SHONAIOS HHALNAAWNOD m wﬁ u

(99.601)-HOV-1E8

("SLALLS
"23X3 000L/SHYOHUT)
cl 6 31V HOHH3
("SLIALS
("SYH DNINIVYL HL1IM) 09€L *33X3 000L/SYNOH)
0cL - ("SHH ODNINIVHL LNOHLIM) 0S6 1S00
AHOL1SIH F1dINVX3
NVHLHOd SIN3 vav
SHNOH 1TV10l 9061
S1N3N31VIS

SHNOH OSNINIVHL 045 o 3718vV.LNI3X3 CovlL e

SUNOH 9¢EEL o 303 40 S3ANIT FJUNOS 0ELS o
3ZIS

140443

AHVINIANS 103rodd SN3 vav

LT J4NOTd

W. Agresti

CSC
30 of 35

NOISIAIQ SADNIIOS WIALSAS “ WO
NOILVHOJdHOD SHONHAIODS HdILNdNOI
{e2,601)-UOV-1€8

1531 3002 NODIS3a

N

oL

%81 4 - 02
%t I1dNVX3
F1dWVX3 vav d ot
vav
%EE %EE
%VE
>Ew 1SIH AHOLSIH AHOLSIH
e NVH140d NVH1404d

1 I
8 B Q
140443 IN3JH3d

%09 n
I1dINVX3
vav . J o

AdAL ALIAILOVY A9 NOLLNEIY1SIA 140443

8T HYNDIA

W. Agresti
31 of 35

NOISIAIG S3AONIIDS WILSAS

(49601 HOV-LE8

%89
%t

%L9
%6¢€

1
ehl

IF1dINVYX3
SW3 vav

NOILVHOdHO0D SHONHIOS HAHLN4dANOD

%8S
%ZCh

%6Y
%LG

69
[A XA

AHO1SIH

NVH1iHOd

J1EVLINO3IAX3 o
SNOILYHVY1O3a e

SININ3ALVIS

IX3L WVYHO0Ud e
ININWINOD HO MNVIE e
S3INN

SIN3IN3ILV1S
J1avLINOIX3 @

3000 40 S3NIT o

OSSO

32is 31NAON

3000 SINF vaVv 40 311404Ud

6T HdNDIA

1

W. Agrest
CSC

32 of 35

NOISIAIQ S3ONIDS WIALSAS “ "
NOLLVHOJHO0D SHONHIOS HHLAJANOD ﬁ u

(49.60L)-HOV-LES

SNOILVAHISE0 ANV SN1V1S e

3S10d3X3
ONINIVYHL vaVv INOHd Vivd e

SIHIOVOUddVY ONINIVHL e
ONINNV1d LNINIdIdXd e

0¢ H9NDIA

W. Agresti

33 of 35

NOISIAIA S3ONIAOS WILSAS

NOILVHOdJdHO0OD SHONHIOS HALNdNWOD

0SO

{«60L)-HOV-LE8
_ 9961 _ S5l
“ v0 “ £0 “ z0 “ 10 “ »O £0 “ z0 “)
| _ | _ _ viee | vop | %lZ
[[. _ _ 3002 | | woisag | sLoay
[_ _ | |
A N i
AH3AN3G 1S3l
_ anv W31SAS GNV anv baos noisza |l
| JINV1dIOOV NOILVHDILNI
A B R T
| I I | |
| | _ |
| _ . . _
_ _ 1 1 _]
>:m.mnz<%m@w&ﬂwwm¢mww . 531001000413 SIUNSVIW INIWILILXI NVId @
NOILVINIWIT1dWI SSISSV @ NDIS3Q SSISSVY © vav Inis3afe NOILD3T10D ViVa INIH3a
] | | I I I 1
| | _ _ _ _ _
_ _ | _ _ %bZ | e %lb
| | _ i _ N9DIS3A [SI3dS/SL.03H| SWI/ONINIVHL
_ i i] | _ .
I 1S31 WILSAS
1S3 SISATYNY | Sw3
anv NDISIa
“ NOILVHOILNI anv 3a09 SLO3Y NIVHL
371404d ALIALLDY
AT1NAIHIS IVNLOV

TZ J9NdO14

1

34 of 35

W. Agrest

Wviai
NVHL1HOA

WvasL
Aanis

Wvil
vav

NOISIAIQ SADONIIDS WIALSAS Omo
(99.60L)-HOV-LE8 NOILVHOdJdHOD SHONAIODS HALNdWOD

\ 19Nnaoud
\ S /
ANINNOHIANI TINNOSH3d

vav 10 1J0VdNI 3HL NO SNOILVYAHISE0

¢7 H4NDIA

Agresti

w

CSC

35 of 35

RESULTS OF THE
WORKSHOP

QUESTIONNAIRE

RESULTS OF THE WORKSHOP QUESTIONNAIRE

W. W. Agresti

Computer Sciences Corporation

To help mark the tenth anniversary of the Software Engineer-
ing Workshop, the planning committee distributed a question-
naire to everyone on the workshop mailing list (approximately
1000 people). The purpose of the questionnaire was to ob-
tain information from the respondents concerning their

® Role in software development

° Data collection activity

° Perception of changes in the quality of software
® Opinions regarding the progress (or lack thereof)

in various areas of software engineering

Figure 1 shows the questionnaire that was distributed; 195
were completed and returned. The results are summarized in
Figures 2 through 4.

Figure 2 shows the answers to the first five questions. Ap-
proximately 69 percent of the respondents collect some data
on software development, and a similar percentage have been
able to use Software Engineering Laboratory (SEL) documents
or workshop results. The quality of software has improved
both nationally and in the respondents' own organizations.

Figure 3 summarizes the results of questions 6 and 7 on
areas of software engineering that have experienced the
greatest improvement and the most disappointing progress.
Tools and methods have provided the greatest improvements
over the past 5 to 10 years. Metrics and management are
cited as areas of greatest improvement by only 8 percent

of the respondents, while 52 percent list these areas as the
biggest disappointments. These results may be related to
the experiences of the SEL over the past decade as recounted
by V. Basili elsewhere in the proceedings of this workshop.
His conclusion is that collecting data and administering a
program aimed at software technology improvement is a diffi-
cult undertaking. It is very easy for an organization to
make mistakes and thus not obtain the benefits anticipated.
Perhaps the reported disappointment with metrics and manage-
ment is due to high expectations that have been unmet
because the metrics and management programs have been diffi-
cult to implement successfully.

Figure 4 shows a sample of the write-in selections for areas
of improvement and disappointment. Tables 1 through 7 pro-

vide the complete numerical results and show how respondents
in different categories (manager, developer, etc.) answered

each question.

Overall, the questionnaire succeeded in obtaining a sample
of opinions on issues in software engineering.

ACKNOWLEDGMENT

John Cook of NASA/GSFC maintained the questionnaire data and
results,

QUESTICHHAIRE
TENTH ANNUAL SOFTVUARE ENGINEERING (JORKSHOP
For each question, please check one option,

1. UYhat is your role in software development?

.. manager _ teacher
. developer _ researcher
_ product assurance _ student

2. Does your organization collect internal data (e.g., on effort,
errors, changes) on software development projects?

yes

no

3. Has your organization been able to use information from past
MASA/SEL workshops or NHASA/SEL documents?

- Yes

_ no

_ never attended SEL workshops; don't have SEL documents

4. What has happened to the gquality of software in your
organization over the past 5-10 years?
. greatly improved
inproved somewhat
.. stayed about the same
— quality has declined

5. What, in your opinion, has happened to the quality of software
nationally over the past 5-10 years?

—. greatly improved

_. improved somewhat

_. stayed about the same

- guality has declined

6. In what area of software engineering has there been the
greatest improvement in the state-of-the-art over the past 5-10
years?

standards

software tools

methods or practices
languages

metrics

management

quality of people

other -- please specify:

-—

7. What area of software engineering has had the most
disappointing progress over the past 5-10 years?
standards

software tools

methods or practices
languages

metrics

management

other == please specify:

LI T I

Please return to lir. Frank licGarry, Code 552, NASA/Goddard Space
Flight Center,Greenbelt, 1ID 20771

Results will be summarized at the Tenth Annual Software
Engineering Workshop.

Figure l. Questionnaire - Tenth Annual Software Engineering
Workshop

(0LL)-YOV-I£8

%2
%EL
%69

%91

ATIVNOILVN

s3TNns9y axTRUUOTIASE2N]

%2 aanNioaa
JWVS FHL

%ZL Q3AvlS
1VHM3INOS

%LS G3AOHdWI
aanoddit

%62 AlLvY3HO

NOLLVZINVOYO
HNOA

{IHVYMILL0S 40 ALINVND "S5

%ve Y/N

%38 ON

%89 S3IA
dSLINS3H 13S 3ISN €

%LE ON

%69 S3IA

¢viva 123100 ¢

*Z 2anbtd

JONVHNSSVY
10Nnaoud

N\

¥3IHOVIL
¥

%8L
H3d013A3Q

%bb
H3IODVYNVWN

%0C
HIHOHVISIY

3704 UNOA 'L

putaosuTbug SIEMlIFOS UT sabuey) uo [pue 9 suot3sand 03 sosuodsay g 9InbTJd

(oLL)-uOV-i£s

SAOHI1IN

%0¢
SAOHI3W

%1E
H3HL0

%1E
S1001
INIWIDVYNVIN %S

SOIH1IN %E

%Vve
SOIHIIN

%8¢
INIWIDVNVIN

ININLINIOddVSIa INIWIAOHJNI
1S31Vv3ddO

1539918

“WRITE-IN" VOTES

AREAS OF SOFTWARE ENGINEERING...
® GREATEST IMPROVEMENT

— PCs/MICROS — SOFTWARE PACKAGES
— “USER FRIENDLINESS'/HUMAN FACTORS

— JAPANESE SOFTWARE FACTORIES
— IINONEII

® BIGGEST DISAPPOINTMENT

— SOFTWARE SIZE ESTIMATING
— DESIGN PROCESS

— TECHNOLOGY TRANSFER

— "“ALL AREAS"”

Figure 4. "Write-in" Votes

831-AGR-(110)

Table 1. Question 1: What Is Your Role in Software

Development?
ROLE CATEGORY RESPONDENTS*®
TOTAL QUESTIONNAIRES RECEIVED 195
MANAGER 96
DEVELOPER 40
RESEARCHER 44
PRODUCT ASSURANCE 26 8
TEACHER 12 g
STUDENT 0 §

*THE SUM OF THE QUESTIONNAIRES RECEIVED BY CATEGORY
IS GREATER THAN 195 BECAUSE SOME PEOPLE CHECKED
MORE THAN ONE CATEGORY.

Table 2. Question 2: Does Your Organization Collect Inter-
nal Data (e.g., on effort, errors, changes) on
Software Development Projects?

RESPONSE
ROLE CATEGORY
g YES NO
TOTAL RESPONSES 134 60
MANAGER 73 2
DEVELOPER 28 12
RESEARCHER 23 21 3
PRODUCT ASSURANCE 19 7 D
TEACHER 8 4 2

Table 3. Question 3: Has Your Organization Been Able
To Use Information From Past NASA/SEL Work-
shops or NASA/SEL Documents?

RESPONSE
ROLE CATEGORY

YES NO N/A
TOTAL RESPONSES 132 16 46
MANAGER 68 7 2
DEVELOPER 2 2 16
RESEARCHER 33 3 8 8
PRODUCT ASSURANCE 1 4 7 g
TEACHER 10 0 2 g

Table 4. Question 4: What Has Happened to the Quality
of Software in Your Organization Over the
Past 5-10 Years?

RESPONSE
ROLE CATEGORY GREATLY SOMEWHAT . STAYED QUALITY
IMPROVED IMPROVED SAME DECLINED
TOTAL RESPONSES 52 105 2 4
MANAGER 27 a9 10 3
DEVELOPER 12 2 2 0
RESEARCHER 10 23 8 1
PRODUCT ASSURANCE 8 17 2 0
TEACHER 4 6 1 0

0129-(117*),86

Table 5.

Question 5:
of Software
5-10 Years?

What Has Happened to the Quality
Nationally Over the Past

RESPONSE
ROLE CATEGORY GREATLY SOMEWHAT STAYED QUALITY
IMPROVED IMPROVED SAME DECLINED
TOTAL RESPONSES 32 134 26 4
MANAGER 16 62 17 2
DEVELOPER 5 30 4 1
RESEARCHER 5 33 5 1
PRODUCT ASSURANCE 4 18 3 1
TEACHER 2 8 1 1

0129 1117°)/86

98-1.L111-6210

z £ L £ v ol HIHIO
0 0 t i ol 4l 37403d 40 ALNVND
t Z € 0 L L ANTWIDOYNYI
0 L £ 0 g L S EREN
L L 8 8 vl o SIDVNONY
14 oL 8L 6 v 9L S3IDILOVH4/SAOH 13N
S 6 9l z 6€ 6L S700L 3HYMLL0S
L 6 9 L 1l 0¢ SAUVANYLS
IONVYHNSSY
HIHOVAL 1onaoud HIHOHVYISIY H340713AIQ HIDVYNVIN SISNOJSIH v3Hv
ONIHIINIONI
Tvi0L JHYMLA0S
AHOD3LYD 370H AG SISNOJSIH
csIesX 0T-G
3sed 9yl I9AQ IIY-9Yl-J0-93e31g 9yl ur juswasoxdwul 3Isa3esrd sy
usog o919yl SeH burassurbug sI1em31JOS JO BBAY JBUYM UI 9 uOIISSIND 9 SDTJE]

98. (.LLL)-6210

z ! 9 z S bl HIHLO
0 0 0 L L z 31403d 40 ALIVND
z 6 zL o ze +9 LNIWIDOVNYA
9 6 zt ¢ J24 sg S ITRE
L 0 z z €l 8l SIDVNONY
z £ 6 L zl z S301LDVHd/SAOH1IN
0 z 5 L I vz S7100L JHYMLI0S
z 3 z 9 L 5z SQHVANYLS
¥IHOVIL IS H3IHOYVIS3Y 43d0TIA3A HIDYNYIN SISNOJSIY LA
AHODILYD 3108 A8 SISNOJSIH viol FHYMIAI0S
ESIeOX 0T~ 3ISed 9aU3l IDAQ ssaxboxg bHurtzuroddestd
1SOW 9yl peH sey buTrisouThug 2IPMIIOS JO ©BIIY JBYM :/ UOTISenyd -, oIqeld

ATTENDEES

o csse sore sers taam bore wie o tese oose

Al'AIR, R,
AGRESTI »
AICHEDE »
ANDREW »
ARNOLD
ARTHUR, 5.
ASTILL, F.
ATZINGER»
AYERS: E
RABRST, T.
BaCAy J,
EALTER,
EARRETT »
RASILI .
RAUMERT »
BAYNES y
BELLARD,
BENOIT,
BERGs R.
BIGWOOD,
BISHOFy Jd.
BITARs 1.
BROEHM-DAVIS,
BOLANDy D,
BONDs J,
BONDs R.
ROONE. I,
BORGESy C,
BOROCHOFF »
BOYER» R
BRASLAU,
BREDESON
BREDESON»
BRENNEMAN
ERETT» D,
BERINKER
BROWNy It
BUELL s J.
CARD, D,
CARMODY »
CASHOUR s
CEFHAS, A.
CHEEK: A,
CHENOWETHs H.
CHRISTELLERY
CHUr R,
CHUNG
CHURCH
CISNEY
CLAY» W,

We

I,
E.
R

E.

L.
C.
Y,
Je
Fe
B
Y.

It.

Ive

R

R

R

M.
0.

Es

C.
J

Hs

A
v,
Lo

OF THE 1985 SOFTWARE ENGINEERING WORKSHOF

o G v vian e e et e S SR saie eSS Fels GeN GNA O Siws Sees G460 GAM Siwi SHE GON YOS G Sees SHE SN oM. e Wi SO Abem e Ws WL Gess eFte Tems eose

NASA/MSFC
COMFUTER SCIENCES CORF
NASA/MSFC

MITRE CORF

VIRGINIA POLYTECH

SIGMA DATA SERVICES
ABERDEEN FROVING GROUNDS
ARINC INC

HARRIS CORP

KIRKLAND AIR FORCE EBASE

NASA/GSFC

UNIVERSITY OF MARYLAND
SPACE TELESCOPRE SCIENCE INSTITUTE
VITRO

FCC

UNIVERSITY OF MARYLAND
COMFUTER SCIENCES CORF
Uusina

NASA HEADQUARTERS

TR W

GEORGE MASON UNIVERSITY
INTERNAL REVENUE SERVICE
N S A

ARINC INC

COMPUTER SCIENCES CORP

DEFT. OF JUSTICE
NASA/NMSFC

TR W

0AaQ0

SFPACE TELESCORE SCIENCE INSTITUTE
INTERNAL REVENUE SERVICE
LOCKHEED

NASA/GSFC

HASHINGTON NAVY YARD
COMPUTER SCIENCES CORF
COMFUTER SCIENCES CORF
FLANNING RESEARCH CORF

N S A

NASA/GSFC

NASA/GSFC

WESTINGHOUSE

HARTIN MARIETTA

Faa '

COMPUTER SCIENCES CORF
NASA/GSFC

ABERDEEN FROVING GROUNDS

A-1

CLAYTON»
CLEMENTSs P
CLIFTONs C.
CLINEDINST,
CLUEBRB: K.
COHENy J,
COHEN, V.,
COOKY Jd,
COOK» L.
COFPy F.
COUCHOUD»
COYNEs C.
CRAFTs R.
CRUICHSHANK s
CYFRYCH» G.
CZYSCONs C,
DANIELE:s C.
DASHIELLs C.
HASKALANTONAKISy
RECKER, W,
DELONG:» 8.
DICKSONs T,
DIECKHANS
DILDY: C.
LDOIRONs M.
DOLEBRERG: S,
DOUBLEDAY »
DUNHAM, J.
DUNIHO, M.
ERERHART »
ELLIS: J.
ELLIS, W,
ENGy E.
ESFANDIARI
FARISZAK, (.
FaNGy A,
FISHKIND,
FOERTSCH»
FORSYTHE»
FRANKEL »
FRANKSy C.
FRYERs R
GANNETT »
GAREER
GARY» J.
GIESEs C,
GBIl €.
GINTNER,
GOOFREY s
GOLNBERG
GOLDEN, J.
GORDONs D,

J

W.

c.

R

R.

I,

He

M.

S,
o,
R

Se

M.
0.

M.
5.
fia

LOCKHEED

NAVAL RESEARCH LARS
INTERNAL REVENUE SERVICE
COMFUTER SCIENCES CORF
IITRI

TR W

EF A

NABA/GSFO

G § C

F a A

SOCIAL SECURITY ADMIN
BURROUGHS

NASA/NMSFC

IEM CORF

IBM CORP

ROME AIR DEVELOFMENT CTR
NASA/LERC

IrM CORF

COMFUTER SCIENCES CORF
COMPUTER SCIENCES CORP
usna

FCC

FCC

IITRI

WESTINGHOUSE
UNIVERSITY OF MARYLAND
RESEARCH TRIANGLE INST
N S A

IITRI

TR W

IEHM CORF

NASA/GSFC

NASA/GSFC

LOCKHEED

NASA HEADUUARTERS

DIGITAL EQUIPMENT CORF
NAaSA/WALLOFS
NAT L BUREAU OF STANDARLDS

GTE

N S A

NASA/GSFC

STARS

EOEING COMPUTER CORF.
VIRGINIA FOLYTECH
NASA/GSFC

MARTIN MARIETTA
EASTHAN KODAK

JET PROFULSION LAR

A-2

GRAaHAMy It
GREEN. In,
GREEN: &,
GREENGRASS»
GRIEF» &,
GRIENs S.
GRIM» C.
GRIMES, G.
GROVER, J,
HALTERMAN
HANMAN, J.
HABWKINSy Re.
HEASTY» R.
HENNINGs H.
HENRYs S.
HENSBLEN, T,
HERRINGs E.
HIGGINSGy L.

£

K

HILLIARDy J.

HORGE s I,
HOGGAND: J.
HOGUEy M.
HOLMES, R.
HOLTs R.
HOUT’ e
HOUSTON, R,
HOWLETT:, A,
HUGHESs A,
HUNTER: K.
HUSETHy §.
HYBERTSONy
IDELSONs N,
ISS5ACE: J,

I,

JAMIESONyY L.,
JAWORSKI, A,

JELETIC, J.
JENKINSy DI

JENNINGSs W,

JESSENy W.
JONES: C.
JOMESy Jo
-.’UO ’ B +
JORIIANY L.
RAaFURAs D,
KARDATZRKE »
hﬁTZ! R
KATZ: S,
KAUSCHs C.
KELLY» A,
KESTERs R.
KIRKy I
RLITSCH: G.

MNASA/GSFC

FENTAGON

NASA/GSFC

N8 A

AFL

IITRY

IBM CORFP

FLANNING RESEARCH CORP
GEORGIA TECH

0a0

F aa

COMPUTER SCIENCES CORF
LOCKHEED

VIRGINIA FPOLYTECH
IITRI

MNASA/GSFL

LOCKHEETD

NASA/NSFC

ABERDEEN FROVING GROUNDS

Fcco o
MCCARE % ASSOC
G S C

GEORGE MASON UNIVERSITY
FORD AEROSFACE

IITRI

IITRI

GENERAL RESEARCH CORF
COMPUTER SCIENCES CORP

LOCKHEED
AFL

TR YW
NASA/GSFE
FORD AEROSFACE
NASA/GSFC

F A& A
HARRIS CORF
RAYTHEON
IITRI

IITRI

COMFPUTER SCIENCES CORF
COMFUTER SCIENCES CORF
NASA/GSFC

UNIVERSITY OF MARYLAND
b1Ia

NASA/GSFC

NASA/GSFC

GENERAL ELECTRIC
NASA/GSFC

COMFUTER SCIENCES CORF

A-3

KNABLEIN, H. TR U

KNIGHT: J. UNIVERSITY OF VIRGINIA
ROERNERyY R, COMPUTER SCIENCES CORF
KOLACKIs R. SPACE & NAVAL SYSTEMS CMD
KOVORIK, V., HARRIS CORF

KRAMERs L. PLANNING RESEARCH CORF
KRAMER: F. FLANNING RESEARCH CORF
KRAMERs N. FRC/GIS

KUHMNY» R, NAT L RBUREAU OF STANDARDS
KURIHARA, T. DBEFT. OF TRANSFORTATION
KYNARD: M. NASA/MSFC

LARBAU, E. NAVAL RESEARCH LARS
LAMAS, M.

LAMOMTAGNE, G, G TE

LANGIONy N. COMPUTER SCIENCES CORF
LEADER: K. IITRI

L.ERAIR: B, NASA/GSFC

LERER» R, GENERAL ELECTRIC
LEWISY J. CENSUS BUREAU

LIMs M. LOCKHEEDR

LIN: K. LOCKHEED

LIy J. COMPUTER SCIENCES CORF
Ldsy F. COMPUTER SCIENCES CORF
LONGs D,

LORD, Y. WESTINGHOUSE

LOVEs R, NASA/GSFC

LOVEs In. LOCKHEED

LUCZAKs R COMFUTER SCIENCES CORF
LUFTON, G, DIGITAL EQUIFPMENT CORF
LYTTONs V., Uusha

MACKs M. NABSA/GSFO

MALDDOXs . GENERAL DYNAMICS
MAURL, Jd, GRUMMAN

MAYBURY» F. TR W

MCCALLY J. SCIENCE AFPFLICATIONS
MCCARRON, 5. NASA/GSFC

MCCLIMENSs M. MITRE CORP

MCCOEYs F.

MCCOY: W, NAVAL SURFACE WEAFUONS CTR
MCGARRY» F. MNASA/GSFC

MCGARRY» M. IITRI

MCGARRYs F. GENERAL ELECTRIC
MCGOVERN, DI, F Aa~A

MCKEEN, C. MARTIN MARIETTA
MOKENNAY J. NS A

MCLEOLy J. JET FROFULSION LAER
MCPHEEsY J. DEFT. OF COMMERCE
MERWARTH, F. NASA/USFC

MIDDLETON» M. FCC

MILLER: W. COMPUTER SCIENCES CORF
MILLICAN» J. SOCIAL SECURITY ADMIN

MILLNER, I IITRI

A4

Mivas E.
MOOREs J.
MOOREHEADY J.,
MOOREHEADy In,
MouwnAaYs B
MUCKEL, J.
MURFHY» B.
MURFHYs R.
MYERS: P,
NELSUNs R.
NICHOLASs I,
NOONANY R,
NORCIO» A,
NUMKIN: L.
O/NEILy L.
DHLMACHER S J.
OLSONy L.
OSBOURNE: W,
OQVERDECKs B.
QWINGS: J.
FACKARD: C,
PAGEs G.
FANMLILIO~YAP,
FARKERs K.
FARKERy D,

N+

FASSALACRUA, T.

FAVUNICAs F.
FAYTON: T.
FENNEYs L.
FETER:s M.
FETERS: K.
FETERSENs E.
PFOFE» J.
FRESTONy D
FURINTUNs S.
PUTNEYs B.
QUANN: E.
QUANNSs J.
RAMSEY» J.
RAMSEYs C.
RATTE» G
REEDIY» AL
REIFER, I,
RICE» B,
RICHARLSON, C.
RINMNs F.
RIZZARDI» G.
ROBERINSy I
ROBERTS» K.
RORERTSs R,
ROBERTSs M.
ROHLEDERs M.

NASA/ARC

VITIROQ

TR W

INTERMETRICS

GENERAL OYNAMICS

COMFUTER SCIENCES CORFP
COMFUTER TECHNOLOGY ASSOC
NASA/GSFC ’
COMPUTER SCIENCES UORF
NASA/GSFC

JET PROFULSION LaAR
WitLIiaM % MARY
Naval RESEARCH
LOCKHEED

ATET EBELL LARS
S0CIAL SECURITY ADMIN

F CC

NAT ‘L BUREAU UF STANDARDS
INTERNAL REVENUE SERVICE
NASA/GSFC

NASA/GSFC

COMFUTER SCIENCES CORF
UNIVERSITY OF MARYLAND

G TE

NASA/GSFC

CENSUS BUREAU

LAES

SOFTWARE DEVELOFMENT CORF
FENNY ASSOCIATES

GENERAL SERVICES ADMIN
NASA/GSFC

AUTOMETRIC

ITTRI

NASA/MSEFC

NASA/GSFC

COMFUTER SCIENCES CORF
NASA/GSFC

UNIVERSITY UF MARYLANID
UNIVERSITY OF MARYLAND
Uusnha

FLANNING RESEARCH CORF
REIFER CUNSULTANTS
U.3. NAVY

FLANNING RESEARCH CORF
FCC

FENTAGON

NS A

Uushba

FLANNING RESEARCH CORF
FURD AERUSFACE

IEM CORF

A-5

ROKKY Jd,
ROSS» K.
ROGSINY R.
ROYs DI,
SAGATs D,
SAMII, M.
SANBURNs J.
SAVOLAINE, C
SCALISEs G.
SCHRADE, T.
BCHULTZy A,
SCHUWARTZs M.
SEIDEWITZy E
EZ:ENN! E.
SERAFINs F.
SHANKLIN» R,
SHENy V.,
SHEFFARDs S,
SHMICONICA.
SINONY R,
SIMO0S, M.
SMITH: D
SHITH, G,
SMITHs K.
SHITHy N.
SNYDERs G,
SNYLER, P,
SOLDERITSCH»
S0LOMON, D,
SONTI» V.
SCRRUWITZy A
SFPEIZER, H.
SFENCE, C.
SFIEGEL. @I
STAMENT, A,
STANLEYs F.
STARK: M.
STEINBACHER
STEVENS, B,
STEVENSs W,
STEWART, L.
STONE» R,
STRAETER: T.
SUnDITH, S,
SURRIs J.
SULLIVAN, S,
SZULEWSKIy F
TALCUTTs G.
TAORMINAY L.
TARDIF, M.
TASKY:s D
TAUSWORTHE »

L

*

Y+

S

+

oo

L]

R

JET FROFULSION LAB
INTERMETRICS

GENERAL ELECTRIC
CENTURY CUMFUTING

IEM CORF

COMFUTER SCIENCES CORF
NAGA/GSFC

ATET RELL LARS

DEFT. UF TRANSPORTATION

GEORGE MASON UNIVERSITY
IITRI

NASA/GSFC

NASA/LARC

EG & 6

INTERNAL REVENUE SERVICE
MCC

COMPUTER TECHNOLOGY ASSOC

UNIVERSITY OF MARYLAND

FORL AtROSFACE
NASA/GSFC

NaSAa/LARG

NASA/GSFC

CUMPUTER SCIENCES CORF
MITRE CORF

BURROUGHS

COMFUTER SCIENCES CORF
EENDIX

DEFT. OF HUl

CENSUS BRUREAU

COMFUTER SCIENCES CORF
NASA/GSFC

FLANNING RESEARCH CORP
GEORGE MASON UNIVERSITY
NASA/GSFC

JET FROFULSION LAR
NASA/MSFC

MITRE CORF

COMFUTER TECHNOLOY ASS0OC
FLANNING RESEARUH CURF
GENERAL DYNAMICS

6 S C

UNIVERSITY OF MARYLAND
C.5+ LIRAFPER LAHBS
NASA/MSFC
NASA/GSFC

CENSUS BUREaAU

JET FRUFULSION LAR

A-6

THIBUDEAU
THOMFSON
THURNMAN»

TILLOTSON,
TOLSTIKHIN,

WAL ILURAY
WAL LACEy

WATKINGy

WEINEREE»

WENNESONy
WERKING»

WILLIAMS,

WOODRUFF »

YOUNGERS»
ZAVELER

ZYGIELBAUM»

LOCKHEED

GENERAL RESEARCH CORF
FORD AEROSPACE
Usha

TEKTRONIX
INTERMETRICS

CINCOM

CENSUS BUREAU

ARING INC

IBM CURE

UusuoDa

NASA/GSFC

NASA/LARD

COMPUTER SUCLENUES CORF
NAT‘L BUREAU OF STANDARDS
NASA/NSFC

INTERNAL REVENUE SERVICE
UNIVERSIVY UF VIRUGUINIA
NASA/NMBFC

BURROUGHS

SOHAR

URIVERSTIIY UF MARYLAND
COMSAT

GTE

UNIVERSITY OF MARYLAND
NASAR/GSFC

INFORMATIUS

NASA/GEFC

NASA/MSFC

FLANNING RESEARCH CURF
Ikt CURF

BRUMMAN

NAT‘L BUREAU UF STANDARDS
SOFTECH

COMPUTER SCLENCES CORP
NASA/GSFL

COMFUTER SCIENCES CORF

IITRI

IITR]L

LOCKHEED

FLANNING RESEARUH CORF
WESTINGHOUSE

FLANNING RESEARCH CORF
SFERRY UORF

WCCARE & ASSO0C
JET PROFULSION LAR

A-7

STANDARD BIBLIOGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in
this bibliography are organized into two groups. The first
group is composed of documents issued by the Software Engi-
neering Laboratory (SEL) during its research and development
activities. The second group includes materials that were
published elsewhere but pertain to SEL activities.

SEL-ORIGINATED DOCUMENTS

SEL-76-001, Proceedings From the First Summer Software Engi-
neering Workshop, August 1976

SEL~77-001, The Software Engineering Laboratory,
V. R. Basili, M. V. Zelkowitz, F. E. McGarry, et al., May
1977

SEL~77-002, Proceedings From the Second Summer Software En-
gineering Workshop, September 1977

SEL-77-003, Structured FORTRAN Preprocessor (SFORT), B. Chu
and D. S. Wilson, September 1977

SEL~77-004, GSFC NAVPAK Design Specifications Languages
Study, P. A. Scheffer and C. E. Velez, October 1977

SEL-~78-001, FORTRAN Static Source Code Analyzer (SAP) Design
and Module Descriptions, E. M. O'Neill, S. R. Waligora, and
C. E. Goorevich, February 1978

SEL-78-003, Evaluation of Dragér NAVPAK Software Design,
K. Tasaki and F. E. McGarry, June 1978

SEL-78-004, Structured FORTRAN Preprocessor (SFORT)
PDP-11/70 User's Guide, D. S. Wilson and B. Chu, September
1978

SEL-78-005, Proceedings From the Third Summer Software Engi-
neering Workshop, September 1978

SEL-78-006, GSFC Software Engineering Research Requirements
Analysis Study, P. A. Scheffer and C. E. Velez, November 1978

SEL-78-007, Applicability of the Rayleigh Curve to the SEL
Environment, T. E. Mapp, December 1978

B-1

SEL-78-202, FORTRAN Static Source Code Analyzer Program
(SAP) User's Guide (Revision 2), W. J. Decker and
W. A. Taylor, April 1985

SEL-79-001, SIMPL-D Data Base Reference Manual,
M. V. Zelkowitz, July 1979

SEL-79-002, The Software Engineering Laboratory: Relation-
ship Equations, K. Freburger and V. R. Basili, May 1979

SEL-79~-003, Common Software Module Repository (CSMR) System
Description and User's Guide, C. E. Goorevich, A. L. Green,
and S. R. Waligora, August 1979

SEL-79-004, Evaluation of the Caine, Farber, and Gordon Pro-
gram Design Language (PDL) in the Goddard Space Flight Cen-
ter (GSFC) Code 580 Software Design Environment,

C. E. Goorevich, A. L. Green, and W. J. Decker, September
1979

SEL-79-005, Proceedings From the Fourth Summer Software En-
gineering Workshop, November 1979

SEL-80-001, Functional Requirements/Specifications for
Code 580 Configuration Analysis Tool (CAT), F. K. Banks,
A, L. Green, and C. E. Goorevich, February 1980

SEL-80-002, Multi-Level Expression Design Language-
Requirement Level (MEDL-R) System Evaluation, W. J. Decker
and C. E. Goorevich, May 1980

SEL-80-003, Multimission Modular Spacecraft Ground Support
Software System (MMS/GSSS) State-of-the-Art Computer Systems/
Compatibility Study, T. Welden, M. McClellan, and

P. Liebertz, May 1980

SEL-80-005, A Study of the Musa Reliability Model,
A. M. Miller, November 1980

SEL-80-006, Proceedings From the Fifth Annual Software Engi-
neering Workshop, November 1980

SEL-80-007, An Appraisal of Selected Cost/Resource Estima-
tion Models for Software Systems, J. F. Cook and
F. E. McGarry, December 1980

SEL-80-104, Configuration Analysis Tool (CAT) System De-
scription and User's Guide (Revision 1), W. Decker and
W. Taylor, December 1982

SEL-81-008, Cost and Reliability Estimation Models (CAREM)
User's Guide, J. F. Cook and E. Edwards, February 1981

SEL-81-009, Software Engineering Laboratory Programmer Work-
bench Phase 1 Evaluation, W. J. Decker and F. E. McGarry,
March 1981 '

SEL-81-011, Evaluating Software Development by Analysis of
Change Data, D. M. Weliss, November 1981

SEL-81-012, The Rayleigh Curve As a Model for Effort Distri-
pbution Over the Life of Medium Scale Software Systems, G. O.
Picasso, December 1981

SEL-81-013, Proceedings From the Sixth Annual Software Engi-
neering Workshop, December 1981

SEL-81-014, Automated Collection of Software Engineering
Data in the Software Engineering Laboratory (SEL),
A. L. Green, W. J. Decker, and F. E. McGarry, September 1981

SEL~81-101, Guide to Data Collection, V. E. Church,
D. N. Card, F. E. McGarry, et al., August 1982

SEL-81-102, Software Engineering Laboratory (SEL) Data Base
Organization and User's Guide Revision 1, P. Lo and
D. Wyckoff, July 1983

SEL-81-104, The Software Engineering Laboratory, D. N. Card,
F. E. McGarry, G. Page, et al., February 1982

SEL-81-106, Software Engineering Laboratory (SEL) Document
Library (DOCLIB) System Description and User's Guide,
W. Taylor and W. J. Decker, May 1985

SEL-81-107, Software Engineering Laboratory (SEL) Compendium
of Tools, W. J. Decker, W. A. Taylor, and E. J. Smith,
February 1982

SEL-81-110, Evaluation of an Independent Verification and
Validation (IV&V) Methodology for Flight Dynamics, G. Page,
F. E. McGarry, and D. N. Card, June 1985

SEL-81-203, Software Engineering Laboratory (SEL) Data Base
Maintenance System (DBAM) User's Guide and System Descrip-
tion, P. Lo, June 1984

SEL-81-205, Recommended Approach to Software Development,
F. E. McGarry, G. Page, S. Eslinger, et al., April 1983

SEL-82-001L, Evaluation of Management Measures of Software
Development, G. Page, D. N. Card, and F. E. McGarry,
September 1982, vols. 1 and 2

SEL-82-003, Software Engineering Laboratory (SEL) Data Base
Reporting Software User's Guide and System Description,
P, Lo, September 1982

SEL-82-004, Collected Software Engineering Papers: Vol-
ume 1, July 1982

SEL-82-007, Proceedings From the Seventh Annual Software
Engineering Workshop, December 1982

SEL-82-008, Evaluating Software Development by Analysis of
Cnanges: The Data From the Software Engineering Laboratory,
V. R. Basili and D. M. Weiss, December 1982

SEL-82-102, FORTRAN Static Source Code Analyzer Program
(SAP) System Description (Revision l), W. A. Taylor and
W. J. Decker, April 1985

SEL-82-105, Glossary of Software Engineering Laboratory
Terms, T. A. Babst, F. E. McGarry., and M. G. Rohleder,
October 1983

SEL-82-306, Annotated Bibliography of Software Engineering
Laboratory Literature, D. N. Card, Q. L. Jordan, and
F. E. McGarry, November 1985 ‘

SEL-83-001, An Approach to Software Cost Estimation,
F. E. McGarry, G. Page, D. N. Card, et al., February 1984

SEL-83-002, Measures and Metrics for Software Development,
D. N. Card, F. E. McGarry, G. Page, et al., March 1984

SEL-83-003, Collected Software Englneerlng Papers: Vol-
ume II, November 1983

SEL-83-006, Monitoring Software Development Through Dynamic
Variables, C. W. Doerflinger, November 1983

SEL-83-007, Proceedings From the Eighth Annual Software En-
gineering Workshop, November 1983

SEL-83-104, Software En 1neer1ng Laboratorz {(SEL) Data Base
Retrieval System (DARES) User's Guide, T. A. Babst,

W. J. Decker, P. Lo, and W. Miller, August 1984

SEL-83-105, Software Engineering Laboratory (SEL) Data Base
Retrieval System (DARES) System Description, P. Lo,
W. J. Decker, and W. Miller, August 1984

SEL-84-001, Manager's Handbook for Software Deyelopment,
W. W. Agresti, F. E. McGarry, D. N. Card, et al,, April 1984

SEL-84-002, Configuration Management and Control: Policies
and Procedures, Q. L. Jordan and E. Edwards, December 1984

SEL-84-003, Investigation of Specification Measures for the
Software Engineering Laboratory (SEL), W. W. Agresti,
V. E. Church, and F. E. McGarry, December 1984

SEL-84-004, Proceedings From the Ninth Annual Software Engi-
neering Workshop, November 1984

SEL-85-001, A Comparison of Software Verification Tech-
niques, D. N. Card, R. W. Selby, Jr., F. E. McGarry, et al.,
April 1985

SEL-85-002, Ada Training Evaluation and Recommendations From
the Gamma Ray Observatory Ada Development Team, R. Murphy
and M. Stark, October 1985

SEL-85-003, Collected Software Engineering Papers:
volume III, November 1985

SEL~85-004, Evaluations of Software Technologies: Testing,
CLEANROOM, and Metrics, R. W. Selby, Jr., May 1985

SEL-85-005, Software Verification and Testing, D. N. Card,
C. Antle, and E. Edwards, December 1985

SEL-86-001, Programmer's Handbook for Flight Dynamics
Software Development, R. Wood and E. Edwards, March 1986

SEL-RELATED LITERATURE

Agresti, W. W., Definition of Specification Measures for the
Software Engineering Laboratory, Computer Sciences Corpora-
tion, CSC/TM-84/6085, June 1984

2pAgresti, W. W., F. E. McGarry, D. N. Card, et al., "Meas-
uring Software Technology," Program Transformation and Pro-
gramming Environments. New York: Springer-Verlag, 1984

3Bailey, J. W., and V. R. Basili, "A Meta-Model for Soft-
ware Development Resource Expenditures," Proceedings of the
Fifth International Conference on Software Engineering.

New York: Computer Societies Press, 1981

B-5

Basili, V. R., "SEL Relationships for Programming Measure-

ment and Estimation," University of Maryland, Technical Mem-
orandum, October 1979

3Basili, V. R., "Models and Metrics for Software Manage~
ment and Engineering," ASME Advances in Computer Technology,
January 1980, vol. 1

Basili, V. R., Tutorial on Models and Metrics for Software
Management and Englneering. New York: Computer Societles
Press, 1980 (also designated SEL-80-008)

lBasili, V. R., "Quantitative Evaluation of Software
Methodology," Proceedings of the First Pan-Pacific Computer
Conference, September 1985

3Basili, V. R., and J. Beane, "Can the Parr Curve Help
With Manpower Distribution and Resource Estimation Prob-
lems?", Journal of Systems and Software, February 1981,
vol. 2, no. 1

3Basili, V. R., and K. Freburger, "Programming Measurement
and Estimation in the Software Engineering Laboratory,"
Journal of Systems and Software, February 1981, vol. 2, no. 1

lBasili, V. R., and N. M, Panlilio-Yap, "Finding Relation-
ships Between Effort and Other Variables in the SEL," Pro-
ceedings of the International Computer Software and Applica-
tions Conference, October 1985

2Basili, V. R., and B. T. Perricone, “Softwaré Errors and
Complexity: An Empirical Investigation,” Communications of
the ACM, January 1984, vol. 27, no. 1

3Basili, V. R., and T. Phillips, "Evaluating and Comparing
Software Metrics in the Software Engineering Laboratory,"
Proceedings of the ACM SIGMETRICS Symposium/Workshop: Qual-
ity Metrics, March 1981

lBasili, V. R., and C. L. Ramsey, "ARROWSMITH-P--A Proto-
type Expert System for Software Engineering Management,"
Proceedings of the IEEE/MITRE Expert Systems in Government
Symposium, October 1985

Basili, V. R., and R. Reiter, "Evaluating Automatable Meas-
ures for Software Development," Proceedings of the Workshop
on Quantitative Software Models for Reliability, Complexity
and Cost, October 1979

2Basili, V. R., R. W. Selby, and T. Phillips, "Metric Anal-
ysis and Data Validation Across FORTRAN Projects," IEEE
Transactions on Software Engineering, November 1983

B-6

lBasili, V. R., and R. W. Selby, Jr., "Calculation and Use
of an Environments's Characteristic Software Metric Set,"
Proceedings of the Eighth International Conference on Soft-
ware Endineering, August 1985

Basili, V. R., and R. W. Selby, Jr., Comparing the Effective-
ness of Software Testing Strategies, University of Maryland
Technical Report, TR-1501, May 1985

2Bagili, V.R., and D. M. Weiss, A Methodology for Collect-
ing Valid Software Engineering Data, University of Maryland,
Technical Report TR-~1235, December 1982

lBasili, V. R., and D. M. Weiss, "A Methodology for Collect-
ing Vvalid Software Engineering Data," IEEE Transactions on
Software Engineering, November 1984

3Basili, V. R., and M. V. Zelkowitz, "The Software Engi-
neering Laboratory: Objectives," Proceedings of the
Fifteenth Annual Conference on Computer Personnel Research,
August 1977

Basili, V. R., and M. V. Zelkowitz, "Designing a Software
Measurement Experiment," Proceedings of the Software Life
Cycle Management Workshop, September 1977

3Basili, V. R., and M. V. Zelkowitz, "Operation of the Soft-
ware Engineering Laboratory," Proceedings of the Second Soft-
ware Life Cycle Management Workshop, August 1978

3Basili, V. R., and M. V. Zelkowitz, "Measuring Software
Development Characteristics in the Local Environment," Com-
puters and Structures, August 1978, vol. 10

Basili, V. R., and M. V. Zelkowitz, "Analyzing Medium Scale
Software Development," Proceedings of the Third Interna-
tional Conference on Software Engineering. New York: Com-
puter Societies Press, 1978

lCard, D. N., "A Software Technology Evaluation Program,"
Annais do XVIII Congresso Nacional de Informatica, October
1985

lcard, b. N., G. T. Page, and F. E. McGarry, "Criteria for
Software Modularization," Proceedings of the Eighth Interna-
tional Conference on Software Engineering, August 1985

3Chen, E., and M. V. Zelkowitz, “"Use of Cluster Analysis
To Evaluate Software Engineering Methodologies," Proceed-
ings of the Fifth International Conference on Software
Engineering. New York: Computer Societies Press, 1981

B-7

2poerflinger, C. W., and V. R. Basili, "Monitoring Software
Development Through Dynamic Variables," Proceedings of the
Seventh International Computer Software and Applications
Conference. New York: Computer Societies Press, 1983

Higher Order Software, Inc., TR-9, A Demonstration of AXES
for NAVPAK, M. Hamilton and S. Zeldin, September 1977 (also
designated SEL-~77-005)

iMcGarry, F. E., J. Valett, and D. Hall, "Measuring the
Impact of Computer Resource Quality on the Software Develop-
ment Process and Product,” Proceedings of the Hawaiian Inter-
national anference on System Sciences, January 1985

lPage, G., F. E. McGarry, and D, N. Card, "A Practical Ex-
perience With Independent Verification and validation,"
Proceedings of the Eighth International Computer Software
and Applications Conference, November 1984

lRamsey, J., and V. R. Basili, "Analyzing the Test Process
Using Structural Coverage," Proceedings of the Eighth Inter-
national Conference on Software Engineering, August 1985

Turner, C., and G. Caron, A Comparison of RADC and NASA/SEL
Software Development Data, Data and Analysis Center for
Software, Special Publication, May 1981

Turner, C., G. Caron, and G. Brement, NASA/SEL Data Compen-
dium, Data and Analysis Center for Software, Special Publi-
cation, April 1981

lgeiss, D. M., and V. R. Basili, "Evaluating Software De-

velopment by Analysis of Changes: Some Data From the Soft-
ware Engineering Laboratory," IEEE Transactions on Software
Engineering, February 1985

3zelkowitz, M. V., “"Resource Estimation for Medium Scale
Software Projects," Proceedings of the Twelfth Conference on
the Interface of Statistics and Computer Science.

New York: Computer Societies Press, 1979

27elkowitz, M. V., "Data Collection and Evaluation for Ex-
perimental Computer Science Research," Empirical Foundations
for Computer and Information Science (proceedings),

November 1982

Zelkowitz, M. V., and V. R. Basili, "Operational Aspects of
a Software Measurement Facility," Proceedings of the Soft-
ware Life Cycle Management Workshop, September 1977

lthis article also appears in SEL-85-003, Collected Soft-
ware Engineering Papers: Volume III, November 1985.

2rhis article also appears in SEL-83-003, Collected Soft-
ware Engineering Papers: Volume II, November 1983.

3This article also appears in SEL-82-004, Collected Soft-
'ware Engineering Papers: Volume I, July I1982.

B-9

